a) Số giá trị nguyên của tham số m thuộc (-5;5) để phuong trình x2+2mx+m2+m-3 =0 có 2 nghiệm phân biệt
b)Với giá trị nào của m thì nhị thức bậc nhất f(x)=mx-3 luôn âm với mọi x
Cho hệ PT \(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\) (m là tham số)
a, giải và biện luận hệ pt theo m
b, xác định giá trị nguyên của m để hệ có nghiệm duy nhất (x;y) sao cho x>0,y>0
c, với giá trị nào của m thì hệ có nghiệm (x;y) với x,y là các số nguyên dương
a) Với \(m=0\): hệ phương trình đã cho tương đương với:
\(\hept{\begin{cases}4y=10\\x=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=\frac{5}{2}\end{cases}}\)
Với \(m\ne0\): hệ có nghiệm duy nhất khi:
\(\frac{m}{1}\ne\frac{4}{m}\Leftrightarrow m\ne\pm2\)
Hệ có vô số nghiệm khi:
\(\frac{m}{1}=\frac{4}{m}=\frac{10-m}{4}\Leftrightarrow m=2\)
Hệ vô nghiệm khi:
\(\frac{m}{1}=\frac{4}{m}\ne\frac{10-m}{4}\Leftrightarrow m=-2\).
b) với \(m\ne\pm2\)hệ có nghiệm duy nhất.
\(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\\x=4-my\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{8-m}{m+2}\\y=\frac{5}{m+2}\end{cases}}\)
\(\hept{\begin{cases}\frac{8-m}{m+2}>0\\\frac{5}{m+2}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}8-m>0\\m+2>0\end{cases}}\Leftrightarrow-2< m< 8\)
c) \(\hept{\begin{cases}\frac{8-m}{m+2}=\frac{10-m-2}{m+2}=\frac{10}{m+2}-1\inℤ\\\frac{5}{m+2}\inℤ\end{cases}}\Leftrightarrow\frac{5}{m+2}\inℤ\)
\(\frac{5}{m+2}=t\inℤ\Rightarrow m=\frac{5}{t}-2\)
Để \(x,y\)dương thì \(-2< \frac{5}{t}-2< 8\Leftrightarrow0< \frac{5}{t}< 10\Rightarrow t\ge1\)
Vậy \(m=\frac{5}{t}-2\)với \(t\)nguyên dương thì thỏa mãn ycbt.
cho hệ phương trình mx -y =2m 4x - my=6+m Với giá trị nào của m thì hệ phương trình có duy nhất một nghiệm Với giá trị nào của m thì hệ phương trình có vô số nghiệm Với giá trị nào của m thì hệ phương trình vô nghiệm
a: Để hệ có duy nhất 1 nghiệm thì \(\dfrac{m}{4}< >\dfrac{-1}{-m}=\dfrac{1}{m}\)
=>m^2<>4
=>m<>2 và m<>-2
b: Để hệ có vô số nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}=\dfrac{2m}{m+6}=\dfrac{1}{m}\)
=>m^2=4 và 2m^2=m+6
=>m=2
c: Để hệ vô nghiệm thì m/4=1/m<>2m/m+6
=>m=-2
Cho hệ pt: \(\left\{{}\begin{matrix}3x-y=2\\9x-my=m\end{matrix}\right.\)
1. Với giá trị nào của m thì hệ phương trình vô nghiệm
2. Với giá trị nào của m thì hệ phương trình có vô số nghiệm?
3. Với giá trị nào của m thì hệ phương trình có nghiệm duy nhất
4. Tìm m để hệ có nghiệm duy nhất x> 0; y<0
Với giá trị nào của tham số m thì phương trình x + 4 − x 2 = m có nghiệm?
A. − 2 < m < 2
B. − 2 < m < 2 2
C. − 2 ≤ m ≤ 2 2
D. − 2 ≤ m ≤ 2
Đáp án C
Ta có: x + 4 − x 2 ≤ 1 2 + 1 2 x 2 + 4 − x 2 = 8
⇒ − 2 2 ≤ x + 4 − x 2 ≤ 2 2 ⇒ để phương trình có nghiệm thì − 2 2 ≤ m ≤ 2 2 .
Cho hệ phương trình:
\(\hept{\begin{cases}mx+4y=10-m\\x+my=6\end{cases}}\)
a)Giải hệ phương trình khi m=\(\sqrt{2}\)
b)Xác định các giá trị nguyên của m để hệ có nghiệm duy nhất (x,y) sao cho x>0,y>0
c)Với các giá trị nguyên nào của m thì hệ có nghiệm (x,y) là các số nguyên dương
a) Thay m vào phương trình, ta có:
\(\hept{\begin{cases}\sqrt{2}\times x+4y=10-\sqrt{2}\\x+\sqrt{2}\times y=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+4y=10-\sqrt{2}\\x=6-\sqrt{2}y\end{cases}}\)
Thay giá trị đã có của x vào phương trình
\(\sqrt{2}\times\left(6-\sqrt{2}y\right)+4y=10-\sqrt{2}\)
\(\Rightarrow y=5-\frac{7\sqrt{2}}{2}\)
Thay giá trị của y vào phương trình:
\(x=6-\sqrt{2}\times\left(5-\frac{7\sqrt{2}}{2}\right)\)
\(\Rightarrow x=13-5\sqrt{2}\)
Cho phương trình: 4x – 2 = k2 x + k ( 1) ( Với ẩn x với k là tham số )
a) Với giá trị nào của k thì PT (1) có nghiệm x = 1
b)Với giá trị nào của k thì PT (1) có nghiệm duy nhất? có vô số nghiệm? vô nghiệm ?
giúp mình được không, mình đang cần gấp
Với giá trị nào của m thì phương trình ẩn x: 2x – 5 = m + 8 có nghiệm số âm?
Ta có: 2x – 5 = m + 8
⇔ 2x = m + 8 + 5
⇔ 2x = m + 13
⇔ x = (m + 13)/2
Phương trình có nghiệm số âm khi (m + 13)/2 < 0 ⇔ m + 13 < 0 ⇔ m < -13