Tìm các số nguyên x để \(F=\frac{3x}{x^2+2}\) nhận giá trị là số nguyên.
Tìm các số nguyên x để mỗi biểu thức sau đạt giá trị là số nguyên: \(F=\frac{3x}{x^2+2}\)
tìm các giá trị nguyên âm của x để phân số 3x+2/x+2 nhận giá trị nguyên
`( 3x + 2 )/( x + 2 )` nguyên `.`
`=> 3x + 2` \(\vdots\) `x+2`
`=> 3x + 6 - 4` \(\vdots\) `x+2`
`=> 3( x + 2 )-4` \(\vdots\) `x+2`
Do `3( x + 2 )` \(\vdots\) `x+2` mà để `3( x + 2 )-4` \(\vdots\) `x+2`
`=> -4` \(\vdots \) `x+2` hay `x+2 in Ư_(4) = { +-1 ; +-2 ; +-4 }`
Do `x in ZZ^-`
`=> x + 2 in ZZ` `; x + 2 < 2`
`=> x + 2 in { +-1 ; -2 ; -4 }`
`=> x in { -1 ; -3 ; -4 ; -6 }`
Vậy `x in { -1;-3;-4;-6}`
tìm tất cả các giá trị nguyên của x để P= x^4+x^3-3x-1/x^2+x+1 nhận giá trị là số nguyên
\(P=\dfrac{x^4+x^3-3x-1}{x^2+x+1}=\dfrac{\left(x^2-1\right)\left(x^2+x+1\right)-2x}{x^2+x+1}=x^2-1-\dfrac{2x}{x^2+x+1}\)
Vì x \(\in Z\) nên để P \(\in Z\) thì : \(\dfrac{x}{x^2+x+1}\in Z\)
Đặt \(A=\dfrac{x}{x^2+x+1}\) . Với x = 0 ; ta có : \(P=-1\in Z\)
Với x khác 0 ; ta có : \(A=\dfrac{1}{x+\dfrac{1}{x}+1}\)
Nếu x > 0 ; ta có : \(0< A\le\dfrac{1}{3}\) ( vì \(x+\dfrac{1}{x}\ge2\) ) => Ko tồn tại g/t nguyên của A (L)
Nếu x < 0 ; ta có : \(x+\dfrac{1}{x}\le-2\) \(\Rightarrow x+\dfrac{1}{x}+1\le-1\)
Suy ra : \(0>A\ge\dfrac{1}{-1}=-1\) \(\Rightarrow A=-1\)
" = " \(\Leftrightarrow x+\dfrac{1}{x}=-2\Leftrightarrow x=-1\)
x = -1 ; ta có : P = 2 \(\in Z\) (t/m)
Vậy ...
Tìm các số nguyên x để \(N=\frac{x^3+1}{3x-1}\) nhận giá trị là số nguyên.
Tìm các số nguyên x để \(G=\frac{2x-1}{x^2+2}\) nhận giá trị là số nguyên.
Tìm các số nguyên x để:
a) A= x^3+x/x-1 nhận giá trị nguyên
b) B= x^2-4x+5/2x-1 nhận giá trị nguyên
c) C= x^3+1/3x-1 nhận giá trị nguyên
d) D= 3x/x^2+2 nhận giá trị nguyên
e) E= 2x-1/x^2+2 nhận giá trị nguyên
Giúp mik vs m đag cần gấp!!!
a)
Để A nguyên \(\Leftrightarrow x^3+x⋮x-1\)
\(\Leftrightarrow x^3-1+x+1⋮x-1\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+x+1⋮x-1\left(1\right)\)
Vì x nguyên \(\Rightarrow\hept{\begin{cases}x-1\in Z\\x^2+x+1\in Z\end{cases}}\)
\(\Rightarrow\left(x-1\right)\left(x^2+x+1\right)⋮x-1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x+1⋮x-1\)
\(\Leftrightarrow x-1+2⋮x-1\)
Mà \(x-1⋮x-1\)
\(\Rightarrow2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x\in\left\{-1;0;2;3\right\}\)
Vậy \(x\in\left\{-1;0;2;3\right\}\)
b) Để B nguyên \(\Leftrightarrow x^2-4x+5⋮2x-1\)
\(\Leftrightarrow2x^2-8x+10⋮2x-1\)
\(\Leftrightarrow\left(2x^2-x\right)-\left(6x-3\right)-\left(x-7\right)⋮2x-1\)
\(\Leftrightarrow x\left(2x-1\right)-3\left(2x-1\right)-\left(x-7\right)⋮2x-1\)
\(\Leftrightarrow\left(2x-1\right)\left(x-3\right)-\left(x-7\right)⋮2x-1\left(1\right)\)
Vì x nguyên \(\Rightarrow\hept{\begin{cases}2x-1\in Z\\x-3\in Z\end{cases}}\)
\(\Rightarrow\left(2x-1\right)\left(x-3\right)⋮2x-1\left(2\right)\)
Từ (1) và(2) \(\Rightarrow x-7⋮2x-1\)
\(\Leftrightarrow2x-14⋮2x-1\)
\(\Leftrightarrow2x-1-13⋮2x-1\)
Mà \(2x-1⋮2x-1\)
\(\Rightarrow13⋮2x-1\)
\(\Rightarrow2x-1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Làm nốt nha các phần còn lại bạn cứ dựa bài mình mà làm
Tìm số nguyên x để x3+3x2+3x+9 nhận giá trị là số nguyên tố
\(x^3+3x^2+3x+9=x^2\left(x+3\right)+3\left(x+3\right)=\left(x^2+3\right)\left(x+3\right)\).
Số nguyên \(\left(x^2+3\right)\left(x+3\right)\) luôn có hai ước là \(x^2+3,x+3\) nên để \(\left(x^2+3\right)\left(x+3\right)\)là nguyên tố thì một trong hai ước của nó phải bằng 1.
Vì \(x^2+3>1,\) với mọi x nên \(x+3=1\Leftrightarrow x=-2\).
Thay \(x=-2\) vào \(\left(x^2+3\right)\left(x+3\right)\) ta được \(\left(x^2+3\right)\left(x+3\right)=\left[\left(-2\right)^2+3\right]\left(-2+3\right)=7\). (thỏa mãn).
Vậy n = -2 là giá trị cần tìm.
cho đa thức f(x)=x^4+ax^3+cx^2+d. Biết rằng khi x nhận lần lượt các giá trị là -1,2,3,4 thì f(x) nhận các giá trị tương ứng là 132, 18, 68, 162. Tìm các giá trị nguyên của x để f(x) là số chính phương .
cho đa thức f(x)=x^4+ax^3+cx^2+d. Biết rằng khi x nhận lần lượt các giá trị là -1,2,3,4 thì f(x) nhận các giá trị tương ứng là 132, 18, 68, 162. Tìm các giá trị nguyên của x để f(x) là số chính phương .
CÁC CAO THỦ GIÚP EM VỚI