CMR vs mọi số nguyên n, ta có
\(n^3-n:6\).
CMR vs mọi số nguyên n, ta có
\(n^3+23n:6\).
n^3+23n=n(n^2+23)=n(n^2-1)+24n
=(n-1)n(n+1)+24n
Vi (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên tồn tại 1 bội của 2, 1 bội của 3.
Mà (2,3)=1
Suy ra (n-1)n(n+1) chia hết cho 2*3=6
Mà 24n chia hết cho 6 ( do 24 chia hết cho 6)
Suy ra đccm
CMR vs mọi số nguyên n, ta có
\(n^5-3n^3+4n:120\).
CMR: 2n^2.( n+1 ) - 2n^2.( n^2 +n - 3 ) chia hết cho 6 vs mọi số nguyên n
ta có
\(2n^2\left(n+1\right)-2n^2\left(n^2+n-3\right)=2n^2\left(4-n^2\right)=2n^2\left(2-n\right)\left(2+n\right)\)
nhận thấy \(n-2,n,n+2\)là ba số chẵn liên tiếp hoặc 3 số lẻ liên tiếp
do đó tích \(n^2\left(2-n\right)\left(2+n\right)\text{ chia hết cho 3 với mọi n}\)
hay \(2n^2\left(2-n\right)\left(2+n\right)\text{ chia hết cho 6 với mọi n}\)
bài 5 : Cho : A=n^6=10n^4+n^3+98n-6n^5-26 và B=1-n+n^3 . CMr với n nguyên thì thương của phép chia A cho B là bội của 6
bài 6 : CM với mọi số nguyên a ta đếu có : a^3+5a là số nguyên chia hết cho 6
CMR: Vs mọi n nguyên dương ta luôn có \(4^{n+3}+4^{n+2}-4^{n+1}+4^n\) chia hết cho 300
bạn ghi sai đề ; 4n+3+4n+2-4n-1-4n =4n( 43+42-4-1)=4n.75 =4n-1.300 ta thấy n\(\inℕ^∗\) nên 4n-1.300 \(⋮\)300 \(\Rightarrow\)..............
......................(bạn ghi câu kết nha
Bài 1)a)Chứng minh rằng: với mọi số nguyên n ta luôn có: \(\left(n^3-n\right)\)chia hết cho 6
b)Với mọi số nguyên n ta luôn có \(\left(n^5-n\right)\)chia hết cho 30
c)cho a,b,c là các số nguyên. CMR \(\left(a^3+b^3+c^3\right)\)chia hết cho 6 <=> (a+b+c) chia hết cho 6
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
Cm rằng vs mọi số nguyên dương n>= 4 ta có: 3^n-1 > n(n+2)
Ta chứng minh bằng quy nạp:
- Với \(n=4\) BĐT trở thành \(3^3>4.6\) (đúng)
- Giả sử BĐT đúng với \(n=k\ge4\) hay \(3^{k-1}>k\left(k+2\right)\)
Ta cần chứng minh BĐT cũng đúng với \(n=k+1\)
Hay \(3^k>\left(k+1\right)\left(k+3\right)\)
Thật vậy, ta có:
\(3^k=3.3^{k-1}>3.k\left(k+2\right)=\left(k+1\right)\left(k+3\right)+2k^2+2k-3\)
Do \(k\ge4\Rightarrow k-3>0\Rightarrow2k^2+2k-3>0\)
\(\Rightarrow\left(k+1\right)\left(k+3\right)+2k^2+2k-3>\left(k+1\right)\left(k+3\right)\)
\(\Rightarrow3^k>\left(k+1\right)\left(k+3\right)\) (đpcm)
CMR
(n-2).(n+3) +10ko chia hết cho 25 vs mọi số nguyên n
1.CMR: 55^n+1 - 55^n chia hết cho 54(vs n là STN)
2.CMR:n^2(n+1)+2n(n+1) luôn chia hết cho 6 vs mọi số nguyên n.
Help me!
1) \(55^{n+1}-55^n=55^n\left(55-1\right)=55^n.54⋮54\)
2) A= \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
A là tích 3 số TN liên tiep => A\(⋮\)2; A\(⋮\)3
=> A\(⋮\)2.3
A\(⋮\)6