cho a,b,c là số nguyên và b\(\ne\)0
so sánh \(\frac{a}{b}\)và \(\frac{a+n}{b+n}\)
1/ So sánh hai phân số
a) M = \(\frac{2017}{2018}+\frac{2018}{2019}\)và N = \(\frac{2017+2018}{2018+2019}\)
b) A = \(\frac{n+1}{n+2}\)và B = \(\frac{n}{n+3}\)với n \(\in\)N*
2/ Cho phân số\(\frac{a}{b}\)và phân số\(\frac{a}{c}\)có b + c = a (a, b, c\(\in\)Z, b\(\ne\)0, c\(\ne\)0). Chứng tỏ rằng tích của hai phân số (PS) này bằng tổng của chúng.
3/ Tìm PS \(\frac{a}{b}\)bằng PS\(\frac{18}{27}\), biết ƯCLN (a,b) = 13
4/ Tìm số nguyên n để PS A = \(\frac{3n-2}{n+1}\)có giá trị là số nguyên
ai nhanh và đúng mk tick cho
và phải có giải thích nữa nhan =))
1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)
\(\Rightarrow M>N\)
b.ta thấy:
\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
=> A>B
Trịnh Thùy Linh ơi mk cảm ơn bạn nhìu nha =)), iu bạn nhìu
a,tìm số nguyên n để A=\(\frac{3n+2}{n}\)có giá trị là một số nguyên
b,cho a,b,n thuộc N* hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
Để A có giá trị là một số nguyên thì \(3n+2⋮n\)
\(\Rightarrow3n+2⋮3n\Rightarrow2⋮n\)
\(\Rightarrow n\inƯ\left(2\right)=\left\{-1;1;2;-2\right\}\)
Vậy để A có giá trị nguyên thì \(n\in\left\{-1;1;2;-2\right\}\)
a tìm số nguyên n để A = \(\frac{3n+2}{n}\)có giá trị là một số nguyên
b cho a , b \(\varepsilonℕ^∗\).hãy so sánh\(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
a) Ta có: \(A=\frac{3n+2}{n}=3+\frac{2}{n}\)
A là số nguyên <=> n \(\in\)Ư ( 2 ) = { -2; -1; 1; 2 }
b) Thiếu điều kiện n là số nguyên dương.
Xét hiệu: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{b\left(a+n\right)-a\left(b+n\right)}{b\left(b+n\right)}=\frac{ba+bn-ab-an}{b\left(b+n\right)}\)
\(=\frac{bn-an}{b\left(b+n\right)}=\frac{n\left(b-a\right)}{b\left(b+n\right)}\)
TH1: b > a
=> b - a > 0
=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}>0\)
=> \(\frac{a+n}{b+n}>\frac{a}{b}\)
TH2: b < a
=> b - a < 0
=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}< 0\)
=> \(\frac{a+n}{b+n}< \frac{a}{b}\)
TH1: b = a
=> b - a = 0
=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}=0\)
=> \(\frac{a+n}{b+n}=\frac{a}{b}\)
Kết luận:...
a)Để A nguyên thì (3n+2)chia hết cho n mà 3n chia hết cho n nên 2 phải chia hết cho n =>n\(\varepsilon\){2;1;-1;-2}
b)\(\frac{a+n}{b+n}\)=\(\frac{a}{b}\)+1>\(\frac{a}{b}\)=> Điều cần chứng minh
a,cho a,b là hai số nguyên ,b lớn hơn 0 ,n thuộc n sao.Hãy so sánh\(\frac{a}{b}\) và\(\frac{a+n}{b+n}\)
b,áp dụng hãy so sánh \(\frac{2}{7}\)và\(\frac{3}{8}\),\(\frac{-16}{26}và\frac{-17}{25}\),\(\frac{31}{19}và\frac{32}{20}\)
Cho các số hữu tỉ \(x=\frac{a}{b};y=\frac{c}{d}\) và \(z=\frac{m}{n}\). Biết a.d-b.c=1; c.n-d.m=1;b, d, n >0
a) Hãy so sánh các số x, y, z
b) So sánh y với t biết \(t=\frac{a+m}{b+m}\) với b+n\(\ne\)0
Cho a+b+c\(\ne\)0; abc\(\ne\)0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
CMR: trong 3 số a,b,c có 2 số đối nhau.
Từ đó suy ra \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\) với n lẻ
a) Cho tỉ lệ thức\(\frac{6}{{10}} = \frac{9}{{15}}\). So sánh hai tỉ số \(\frac{{6 + 9}}{{10 + 15}}\) và \(\frac{{6 - 9}}{{10 - 15}}\) với các tỉ số trong tỉ lệ thức đã cho.
b) Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\) với \(b + d \ne 0;b - d \ne 0\)
Gọi giá trị trung của các tỉ số đó là k, tức là: \(k = \frac{a}{b} = \frac{c}{d}\)
- Tính a theo b và k, tính c theo d và k.
- Tính tỉ số \(\frac{{a + c}}{{b + d}}\) và \(\frac{{a - c}}{{b - d}}\) theo k.
- So sánh mỗi tỉ số \(\frac{{a + c}}{{b + d}}\) và \(\frac{{a - c}}{{b - d}}\) với các tỉ số \(\frac{a}{b}\) và \(\frac{c}{d}\)
a) Ta có:
\(\begin{array}{l}\frac{6}{{10}} = \frac{{6:2}}{{10:2}} = \frac{3}{5};\\\frac{9}{{15}} = \frac{{9:3}}{{15:3}} = \frac{3}{5}\end{array}\)
\(\begin{array}{l}\frac{{6 + 9}}{{10 + 15}} = \frac{{15}}{{25}} = \frac{{15:5}}{{25:5}} = \frac{3}{5};\\\frac{{6 - 9}}{{10 - 15}} = \frac{{ - 3}}{{ - 5}} = \frac{3}{5}\end{array}\)
Ta được: \(\frac{{6 + 9}}{{10 + 15}} = \frac{{6 - 9}}{{10 - 15}} = \frac{6}{{10}} = \frac{9}{{15}}\)
b) - Vì \(k = \frac{a}{b} \Rightarrow a = k.b\)
Vì \(k = \frac{c}{d} \Rightarrow c = k.d\)
- Ta có:
\(\begin{array}{l}\frac{{a + c}}{{b + d}} = \frac{{k.b + k.d}}{{b + d}} = \frac{{k.(b + d)}}{{b + d}} = k;\\\frac{{a - c}}{{b - d}} = \frac{{k.b - k.d}}{{b - d}} = \frac{{k.(b - d)}}{{b - d}} = k\end{array}\)
- Như vậy, \(\frac{{a + c}}{{b + d}}\) =\(\frac{{a - c}}{{b - d}}\) = \(\frac{a}{b}\) =\(\frac{c}{d}\)( = k)
a: \(\dfrac{6+9}{10+15}=\dfrac{15}{25}=\dfrac{3}{5};\dfrac{6-9}{10-15}=\dfrac{-3}{-5}=\dfrac{3}{5}\)
=>Bằng nhau
b: a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k;\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)
=>\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a}{b}=\dfrac{c}{d}\)
1. Cho số hữu tỉ x=a-5\a (a khác 0). Với giá trị nguyên nào của a thì x là số nguyên?
2. Cho a, b thuộc Z; b>0; n thuộc N sao. Hãy so sánh hai số hữu tỉ\(\frac{a}{b}\) và\(\frac{a+n}{b+n}\)
a, Để x là số nguyên
=> a - 5 chia hét cho a
Vì a chia hết cho a
=> -5 chia hết cho a
=> a \(\in\){1; -1; 5; -5}
\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+bn}{b\left(b+n\right)}\)
TH1: a = b
=> an = bn
=> ab+an = ab+bn
=> \(\frac{a}{b}=\frac{a+n}{b+n}\)
TH2: a > b
=> an > bn
=> ab + an > ab + bn
=> \(\frac{a}{b}>\frac{a+n}{b+n}\)
TH3: a < b
=> an < bn
=> ab + an < ab + bn
=> \(\frac{a}{b}
SO SÁNH 2 P/S SAU
\(\frac{a-1}{a}\)và \(\frac{b+1}{b}\)
(biết a;b là 2 số nguyên cùng dấu. a,b\(\ne\)0 )