Tìm giá trị nhỏ nhất của biểu thức:
a) \(A=x^2-20x+101\)
b) \(B=4x^2+4x+2\)
c) \(C=2x^2-6x\)
Bài 1:Tìm giá trị nhỏ nhất của biểu thức
a)A=x^2-6x+11
b)B=x^2-20x+101
Bài 2:Tìm giá trị lớn nhất của biểu thức
a)A=4x-x^2+3
b)B=-x^2+6x-11
\(B1,a,A=x^2-6x+11\)
\(=\left(x^2-6x+9\right)+2\)
\(=\left(x-3\right)^2+2\ge2\)
Dấu "=" <=> x=3
Vậy ..........
\(b,B=x^2-20x+101\)
\(=\left(x^2-20x+100\right)+1\)
\(=\left(x-10\right)^2+1\ge1\)
Dấu "=" <=> x = 10
Vậy .
\(2,a,A=4x-x^2+3\)
\(=7-\left(x^2-4x+4\right)\)'
\(=7-\left(x-2\right)^2\le7\)
Dấu ''='' <=> x = 2
Vậy .
\(b,B=-x^2+6x-11\)
\(=-2-\left(x^2-6x+9\right)\)
\(=-2-\left(x-3\right)^2\le-2\)
Dấu ""=" <=> x = 3
Vậy..
Bài 9 : tìm giá trị lớn nhất của biểu thức
A) -x^2-2x+3
B) -4x^2+4x-3
C) -x^2+6x-15
Bài 8 tìm giá trị nhỏ nhất của biểu thức
B)X² — 6x + 11
C. X² – x +1
D. X² – 12x + 2
a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)
\(=-\left(x+1\right)^2+4\le4\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN là 4 khi x = -1
b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)
\(=-\left(2x-1\right)^2-2\le-2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTLN B là -2 khi x = 1/2
c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)
\(=-\left(x-1\right)^2-14\le-14\)
Vâỵ GTLN C là -14 khi x = 1
Bài 8 :
b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 3
Vậy GTNN B là 2 khi x = 3
c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy ...
c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)
Dấu ''='' xảy ra khi x = 6
Vậy ...
Tìm giá trị nhỏ nhất của biểu thức: a) A= x^2- 6x+ 11
b) B= x^2- 20x+ 101
c) C= 4x- x^2+ 1
d) D= (x- 1) (x+ 2) (x+ 3) (x+ 6)
e) E= x^2- 2x+ y^2+ 4y+ 8
f) F= x^2- 4x+ y^2- 8y+ 6
g) G= x^2- 4xy 5y^2+ 10x- 22y+ 28
a) \(A=x^2+6x+11\)
\(A=x^2+6x+9+2\)
\(A=\left(x+3\right)^2+2\)
Có: \(\left(x+3\right)^2\ge0\Rightarrow\left(x+3\right)^2+2\ge2\)
Dấu = xảy ra khi: \(\left(x+3\right)^2=0\Rightarrow x+3=0\Rightarrow x=-3\)
Vậy: \(Min_A=2\) tại \(x=-3\)
b) \(B=4x-x^2+1\)
\(B=-x^2+4x-4+5\)
\(B=-\left(x-2\right)^2+5\)
\(B=5-\left(x-2\right)^2\)
Có: \(\left(x-2\right)^2\ge0\)
\(\Rightarrow5-\left(x-2\right)^2\le5\)
Dấu = xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
Vậy: \(Max_B=5\) tại \(x=2\)
d, (x-1) (x+2) (x+3) (x+6)
=(x^2+2x-x-2) (x^2+6x+3x+18)
=(x^2-x^2) + (2x-x+6x-3x) = (-2+18)
=0 + (-8x) =16
= x =16:(-8)
= x =-2
A = x^2 + 6x + 11
= x^2 + 6x + 9 + 2
= (x + 3)^2 + 2
min = 2
Tìm giá trị nhỏ nhất của biểu thức:
a) A= x^2- 6x+ 11
b) B= x^2- 20x+ 101
c) C= 4x- x^2+ 1
d) D= (x- 1) (x+ 2) (x+ 3) (x+ 6)
e) E= x^2- 2x+ y^2+ 4y+ 8
f) F= x^2- 4x+ y^2- 8y+ 6
g) G= x^2- 4xy 5y^2+ 10x- 22y+ 28
tìm giá trị nhỏ nhất của biểu thức
a, A=x^2-6x+11
b, B=x^2-20x+101
c, C= x^2-6x+11
d, D= (x-1)(x+2)(x+3)(x+6)
e,E= x^2-2x+y^2+4y+8
f, x^2-4x+y^2-8y+6
g, G=x^2-4xy+5y^2+10x-22y+28
a/ Ta có:
\(A=x^2-6x+11\)
\(A=x\cdot x-3x-3x+3\cdot3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\ge0\)
Nên GTNN của \(\left(x-3\right)^2\)là 0
=> \(A_{min}=0+2=2\)
mình chỉ biết a. thôi
a) ta có : \(A=x^2-6x+11\)
\(A=x.x-3x-3x+3.3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
vì \(\left(x-3\right)^2\ge0\)
nên GTNN của \(\left(x-3\right)^2\)là \(0\)
\(\Rightarrow\)\(A_{min}\)\(=0+2=2\)
oOo Không đủ can đảm để oOo copy mà nói nhưu mk tự làm
a) tìm giá trị nhỏ nhất của biểu thức:
A=x^2-2x+9
B=x^2+6x-3
c=(x-1)(x-3)+9
b) tìm giá trị lớn nhất của biểu thức: D=-x^2-4x+7
A = x2 - 2x + 9 = ( x2 - 2x + 1 ) + 8 = ( x - 1 )2 + 8 ≥ 8 ∀ x
Dấu "=" xảy ra khi x = 1
=> MinA = 8 <=> x = 1
B = x2 + 6x - 3 = ( x2 + 6x + 9 ) - 12 = ( x + 3 )2 - 12 ≥ -12 ∀ x
Dấu "=" xảy ra khi x = -3
=> MinB = -12 <=> x = -3
C = ( x - 1 )( x - 3 ) + 9 = x2 - 4x + 3 + 9 = ( x2 - 4x + 4 ) + 8 = ( x - 2 )2 + 8 ≥ 8 ∀ x
Dấu "=" xảy ra khi x = 2
=> MinC = 8 <=> x = 2
D = -x2 - 4x + 7 = -( x2 + 4x + 4 ) + 11 = -( x + 2 )2 + 11 ≤ 11 ∀ x
Dấu "=" xảy ra khi x = -2
=> MaxD = 11 <=> x = -2
hello, cần lm j z?
klkkkkkkkkkujoiyuj
Tìm giá trị nhỏ nhất của biểu thức:
a. A = x2 - 6x + 11.
b. B = x2 - 20x + 101.
c. C = x2 - 2x + y2 + 4y + 8.
VD câu a thôi hơi dài đấy
\(A=x^2-6x+11\)
\(A=x^2-2\cdot x\cdot3+3^2+2\)( biến đổi về dạng hằng đẳng thức )
\(A=\left(x-3\right)^2+2\)
Mà ( x - 3 )2 luôn >= 0 với mọi x
\(\Rightarrow A\ge2\)với mọi x
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy,..........
\(B=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1\ge1\)
B min = 1\(\Leftrightarrow x=10\)
\(C=x^2-2x+y^2+4y+8\)
\(\Leftrightarrow C=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+3\)
\(\Leftrightarrow C=\left(x-1\right)^2+\left(y+2\right)^2+3\)
Vì \(\left(x-1\right)^2\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow C=\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy minC = 3 <=> x = 1 ; y = - 2
tìm Giá Trị Lớn Nhất hay Giá Trị Nhỏ Nhất của biểu thức sau:
a)A=x2+4x+7
b)B=2x2-6x
c)C=-2x2+8x-15
A = x2 + 4x + 7
= ( x2 + 4x + 4 ) + 3
= ( x + 2 )2 + 3
( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinA = 3 <=> x = -2
B = 2x2 - 6x
= 2( x2 - 3x + 9/4 ) - 9/2
= 2( x - 3/2 )2 - 9/2
2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinB = -9/2 <=> x = 3/2
C = -2x2 + 8x - 15
= -2( x2 - 4x + 4 ) - 7
= -2( x - 2 )2 - 7
-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = -7 <=> x = 2
Tìm giá trị nhỏ nhất của biểu thức:
A=4x2+4x+11
B=x2-20x+101
GIÚP NHA! Thanks!
# Thầy Suga
a) \(A=4x^2+4x+11\)
\(=\left(2x\right)^2+4x+1+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Vậy \(A_{min}=10\Leftrightarrow2x+1=0\Leftrightarrow x=\frac{-1}{2}\)
\(B=x^2-20x+101=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\ge1\)
Vậy \(B_{min}=1\Leftrightarrow x-10=0\Leftrightarrow x=10\)