Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huong Bui
Xem chi tiết
ninh binh Fpt
Xem chi tiết
mộc lan hoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 16:14

loading...loading...loading...

mộc lan hoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 16:13

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\)

=>HB*HC=4^2=16

mà HB+HC=10cm

nên HB,HC là hai nghiệm của phương trình:

\(x^2-10x+16=0\)

=>(x-8)(x-2)=0

=>\(\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)

Do đó, chúng ta sẽ có 2 trường hợp là \(\left[{}\begin{matrix}BH=8cm;CH=2cm\\BH=2cm;CH=8cm\end{matrix}\right.\)

nguyễn thị mỹ lan
Xem chi tiết
linh ma
1 tháng 6 2017 lúc 15:32

áp dụng hệ thức lượng trong tam giác ABC

AN2=BH.BC

=>BC=AB2:BH=25

từ đó áp dụng pytago tính AC=20

lại áp dụng hệ thức lượng ta có;

AH.BC=AB.AC

=>AH=(AB.AC):BC=12

trong tam giác vuông trung tuyễn ứng vs cạnh huyền có số đo = nửa cạnh huyền

=> AM=12,5

=> HM=3,5 theo pytago

=> SAMH=1phần 2 AH.HM=21

nguyễn thị mỹ lan
1 tháng 6 2017 lúc 15:06

GIÚP MÌNH VỚI CÁC BẠN

nguyễn thị mỹ lan
1 tháng 6 2017 lúc 16:19

cảm ơn bạn

trang trang
Xem chi tiết
Phan Thị Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2022 lúc 23:54

AB/AC=3/4 nên HB/HC=9/16

=>HB=9/16HC

Ta có: \(AH^2=HB\cdot HC\)

=>\(HC^2\cdot\dfrac{9}{16}=36\)

=>HC=8(cm)

=>HC=4,5cm

 

Ông Gia Khang
Xem chi tiết
thắng
4 tháng 3 2021 lúc 10:30

tam giác ABH vuông tại H. Áp dụng định lí Pi-ta-go ta có:

AH2=AB2-BH2=52-32=16  => AH=4

Ta có: HC=BC-BH=8-3=5  =>HC=5

Tam giác AHC vuông tại H. Áp dụng định lí Pi-ta-go ta có:

AC2=AH2+HC2=42+52=41

Khách vãng lai đã xóa
Nam Truong Van
Xem chi tiết
Nhã Doanh
22 tháng 8 2018 lúc 20:48

A B C H 1 4

Áp dụng hệ thức lượng trong tam giác vuông

\(AH^2=BH.CH=1.4=4\Rightarrow AH=\sqrt{4}=2\left(cm\right)\)

\(BC=BH+CH=1+4=5\left(cm\right)\)

\(AB^2=BH.BC=1.5=5\Rightarrow AB=\sqrt{5}\left(cm\right)\)

\(AC^2=BC.CH=5.4=20\Rightarrow AC=\sqrt{20}=2\sqrt{5}\left(cm\right)\)

\(\Rightarrow AB.AC=\sqrt{5}.2\sqrt{5}=10\left(cm\right)\)