152 . 164 - 153. 163
122 . 203 - 202 . 123
Cho A=201/202+202/203+203/204 và B= 201+202+203/202+203+204
Xét B = \(\frac{201+202+203}{202+203+204}\)
= \(\frac{201}{202+203+204}\)\(+\)\(\frac{202}{202+203+204}\)\(+\)\(\frac{203}{202+203+204}\)
Vì 202 < 202 + 203 + 204
=> \(\frac{201}{202}\)> \(\frac{201}{202+203+204}\)( 1 )
Vì 203 < 202 + 203 + 204
=> \(\frac{202}{203}\)>\(\frac{202}{202+203+204}\)( 2 )
Vì 204 < 202 + 203 + 204
=> \(\frac{203}{204}\)> \(\frac{203}{202+203+204}\)( 3 )
Cộng vế với vế của ( 1 ), ( 2 ) và ( 3 )
=> \(\frac{201}{202}+\frac{202}{203}+\frac{203}{204}\)> \(\frac{201+202+203}{202+203+204}\)
=> A > B
Vậy A > B
cho :
A = 201/202 + 202/203 + 203/204
B= 201 + 202 +203 / 202 + 203 +204
so sánh A và B
ghi cả lời giải nha !!!
Xét B = \(\frac{201+202+203}{202+203+204}\)
= \(\frac{201}{202+203+204}\)+ \(\frac{202}{202+203+204}\)+ \(\frac{203}{202+203+204}\)
Vì 202 < 202 + 203 + 204 nên \(\frac{201}{202}\)>\(\frac{201}{202+203+204}\)(1)
Vì 203 < 202 + 203 + 204 nên \(\frac{202}{203}\)> \(\frac{202}{202+203+204}\)(2)
Vì 204 < 202 + 203 + 204 nên \(\frac{202}{203}\)>\(\frac{202}{202+203+204}\)(3)
Cộng vế vơi vế của (1) , (2) và (3)
=>\(\frac{201}{202}+\frac{202}{203}+\frac{203}{204}\)> \(\frac{201+202+203}{202+203+204}\)
=> A > B
Vậy A > B
So sánh
202^203 và 203^202
Ta có :
202203 = 8 242 408101 ( 1 )
203202 = 42 209101 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra 202203 < 203202
So sánh
202^203 và 203^202
ai đúng mk tick phải giải thích
..................tên em là jullei Trinh...........................
Ta có : \(202^{203}=(2\cdot101)^{3\cdot101}=(1^3\cdot101^3)^{101}=(8\cdot101\cdot10^{12}\cdot101)=(808\cdot1012)^{101}\)
\(303^{202}=(3\cdot101)^{2\cdot101}=(32\cdot101^2)^{101}=(9\cdot101^2)^{101}\)
\(\Rightarrow(808\cdot101^2)>(9\cdot101^2)\)
Vậy :
202303=(2.101)3.101=(23.1013)101=(8.101.1012)101=(808.1012)101
303202=(3.101)2.101=(32.1012)101=(9.1012)101
Vì (808.1012)101 > (9.1012)101 suy ra 202303> 303202
Vậy.......
chứng tỏ rằng :
a) 1/201 + 1/202 + 1/203+....+ 1/400 > 1/2
b) 1/201 + 1/202 + 1/203+....+ 1/400 < 1
So sánh
a) 202^203 và 203^202
b) 1990^10+1990^9 và 1991^20
c) 11^1979 và 37^1320
a, 202203=(101.2)203
=101203.2203
=101202.2202.202
b, 203202=(101,5.2)202
=101,5202.2202
còn lại dễ
b, 199010+19909=19909.1990+19909=19909.(1990+1)=19909.1991
199120=199119.1991
=>199010+19909<199120
c, 111979<111980=(113)660=1331660
371320=(372)660=1369660
=>111979<371320
Tính:
\(S=1\cdot2+2\cdot3+3\cdot4+...+39\cdot40\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+39\cdot40\cdot\left(41-38\right)\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+39\cdot40\cdot41-38\cdot39\cdot40\)
\(3S=39\cdot40\cdot41\)\(\Rightarrow S=\dfrac{39\cdot40\cdot41}{3}=21320\)
Ta có : \(S=1.2+2.3+3.4+...+38.39+39.40\)
\(3S=1.2.3+2.3.3+3.4.3+...+38.39.3+39.40.3\)
\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+39.40.\left(41-38\right)\) \(3S=39.40.41\)
\(S=\dfrac{39.40.41}{3}\)\(=21320\)
Tính:
S = 1 x 2 + 2 x 3 + 3 x 4 + ... + 38 x 39 + 39 x 40
3S = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 38 x 39 x 3 + 39 x 40 x 3
3S = 1 x 2 x 3 + 2 x 3 x ( 4 - 1 ) + 3 x 4 x ( 5 - 2 ) + ... + 38 x 39 x ( 40 - 37 ) + 39 x 40 x ( 41 - 38 )
3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + ... + 38 x 39 x 40 - 37 x 38 x 39 + 39 x 40 x 41 - 38 x 39 x 40
S = 39 x 40 x 41 : 3
S = 21320
S=1x2+2x3+3x4+...+38x39+39x40
3S=(1x2+2x3+3x4+...+38x39+39x40)x3
3S=1x2x3+2x3x3+3x4x3+....+39x40x3
3S=1x2x3+2x3x(4-1)+3x4x(5-2)+...+39x40x(41-38)
3S=1x2x3+2x3x4-1x2x3+3x4x5-2x3x4+...+39x40x41-38x39x40
3S=39x40x41
3S=63960
S=63960:3
S=21320
So Sánh
202203 và 303202
\(202^{303}=\left(2.101\right)^{3.101}=\left(2^3.101^3\right)^{101}=\left(8.101^3\right)^{101}\)
\(303^{202}=\left(3.101\right)^{2.101}=\left(3^2.101^2\right)^{101}=\left(9.101^2\right)^{101}\)
Mà \(8.101^3>9.101^2\)
\(\Rightarrow202^{303}>303^{202}\)
Tính:
Nếu là violympic
thì cần kq thôi hả
S = 21320
S = 1.2 + 2.3 + 3.4 + ... + 38.39 + 39.40
3S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 38.39.(40-37) + 39.40.(41-38)
3S = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 38.39.40 - 37.38.39 + 39.40.41 - 38.39.40
3S = 39.40.41
S = 13.40.41
S = 21320
S = 1x2+2x3+3x4+ ... + 38x39 + 39 x 40
3S = 1x2x3 + 2x3x3 + 3x4x3 + ... + 38x39x3 + 39x40x3
3S = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + ... + 38x39x( 40-37 ) + 39x40x(41-38)
3S = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + ... + 38x39x40 - 37x38x39 + 39x40x41 - 38x39x40
3S = 39x40x41
S = 39x40x41 : 3
S = 21320