Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huyền Ngọc
Xem chi tiết
Lê Minh Tú
9 tháng 12 2017 lúc 14:13

\(x^2-x+1>0\)

\(\Leftrightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn đúng)

\(\RightarrowĐPCM\)

Nguyễn Huyền Ngọc
9 tháng 12 2017 lúc 14:01

Mọi ng giúp em

Vũ Thị Thùy An
Xem chi tiết
Le Thi Khanh Huyen
14 tháng 12 2016 lúc 17:34

\(A=2x^2+4y^2+4xy-6z+10\)

\(=\left(x^2+4y^2+4xy\right)+\left(x^2-6x+9\right)+1\)

   \(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)

Mà \(\hept{\begin{cases}\left(x+2y\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)

\(\Rightarrow A\ge0+0+1=1>0\)

Vậy ...

Lê Hải
Xem chi tiết
vũ tiền châu
2 tháng 1 2018 lúc 21:01

Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)

               \(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)

=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)

^_^

\(Q=x^2+6y^2-2xy-12x+2y+2017\)

\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)

\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)

\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)

Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)

\(\Rightarrow Q>0\)

Hoàng Đức Khải
2 tháng 1 2018 lúc 21:09

\(Q=x^2+6y^2-2xy-12x+2y+2017\)

\(Q=\left(x^2-2xy+y^2\right)-12x+12y-10y+5y^2+2017\)

\(Q=\left(x-y\right)^2-2.6\left(x-y\right)+36+\left(5y^2-10y+5\right)+1976\)

\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)

\(\left(x-y-6\right)^2;5\left(y-1\right)^2\ge0\)

\(Q>0\forall x;y\in R\)(đpcm)

Rita Hương Rika
Xem chi tiết
 Mashiro Shiina
18 tháng 12 2017 lúc 12:34

Sửa đề: \(A=3x^2-6x+4=3\left(x^2-2x+\dfrac{4}{3}\right)\)

\(A=3\left(x^2-2x+1+\dfrac{1}{3}\right)\)

\(A=3\left(x^2-2x+1\right)+1\)

\(A=3\left(x-1\right)^2+1>0\left(đpcm\right)\)

Kaito Kid
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
6 tháng 7 2017 lúc 12:58

Ta có : x2 - xy + y2 + 1 

 \(=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}+1\)

\(=\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\)

Mà \(\left(x-\frac{y}{2}\right)^2\ge0\forall x\)

     \(\left(\frac{3y}{2}\right)^2\ge0\forall x\)

Nên \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\ge1\forall x\)

Vậy \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1>0\forall x\)

Hay : x2 - xy + y2 + 1  > 0 \(\forall x\)

Hà My Trần
Xem chi tiết
Đinh Đức Hùng
9 tháng 9 2017 lúc 15:17

\(x^2+3xy+4y^2+1=\left(x^2+2.x.\frac{3}{2}y+\frac{9}{4}y^2\right)+\frac{7}{4}y^2+1\)

\(=\left(x+\frac{3}{2}y\right)^2+\frac{7}{4}y^2+1\)

Vì \(\left(x+\frac{3}{2}y\right)^2\ge0;\frac{7}{4}y^2\ge0\) nên \(\left(x+\frac{3}{2}y\right)^2+\frac{7}{4}y^2\ge0\)

\(\Rightarrow\left(x+\frac{3}{2}y\right)^2+\frac{7}{4}y^2+1\ge1>0\)(đpcm)

Trang
Xem chi tiết
Nguyễn Quỳnh Chi
29 tháng 6 2016 lúc 21:39

x^2-x+1

=x^2-x+1/4+3/4

=(x-1/2)^2+3/4

Vì (x-1/2) lớn hơn bằng 0 với mọi x nên (x-1/2)^2+3/4>0

Phamthithanhtra
Xem chi tiết
Kẻ Huỷ Diệt
1 tháng 5 2017 lúc 21:24

Bạn viết thiếu đề bài nhé, phải là -x2 + x - 1 nhỏ hơn hoặc bằng 0 với mọi x!! ^ . ^

Ta có: 

         -x2 + x - 1 = - (x2 - x + 1)

                        = - (x - 1)2   (hằng đẳng thức đấy bạn)

Vì (x - 1)2 \(\ge\)0 với mọi x => - (x - 1)\(\le\)với mọi x.

 Dấu bằng xảy ra <=> x - 1 = 0 <=> x = 1.

_Kik nhé!! ^ ^

Phamthithanhtra
1 tháng 5 2017 lúc 21:34

Không phải chỉ có nhỏ hơn thôi

Vũ Như Mai
2 tháng 5 2017 lúc 8:30

Nhỏ hơn hoặc bằng mà..

Vân Anh Chu
Xem chi tiết
Vân Anh Chu
22 tháng 6 2018 lúc 20:31

chết r đăng nhầm