Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
Phạm Nguyễn Nhã Uyên
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 10 2021 lúc 17:41

Ta có:

\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+0}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2\left(x+y+z\right)}{xyz}}\)

\(=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\) là số hữu tỉ

duy dung
Xem chi tiết
Minh Thư
Xem chi tiết
dinh huong
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 11 2021 lúc 20:03

Đặt vế trái là P

Ta có: \(P=\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+2\right)-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\)

Đặt \(a=\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt[]{\dfrac{xy}{xy}}=2\Rightarrow a-2\ge0\)

\(\Rightarrow P=a^2-3a+2=\left(a-2\right)\left(a-1\right)\ge0\) (đpcm)

Dấu "=" xảy ra khi \(a=2\) hay \(x=y\)

nguyen minh quang
Xem chi tiết
nguyh huy
Xem chi tiết
Đặng Viết Thái
30 tháng 5 2019 lúc 19:43

\(\frac{\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}}{\sqrt{x+y+z}}\)

nguyh huy
30 tháng 5 2019 lúc 19:59

Đặng Viết Thái tử đúng rồi còn mẫu không có căn

nguyh huy
30 tháng 5 2019 lúc 20:12

\(x = { \sqrt{x^2+1} + \sqrt{y^2+1} + \sqrt{z^2+1} \over x + y+z}\)

Nguyễn Vũ Hoàng Anh
Xem chi tiết
Vy Buithao
Xem chi tiết