Cho x, y là các số dương.CMR: x+y-2×(căn x +căn y)+2>0
Cho x, y là các số thực không âm thỏa mãn x+y=1
Chứng minh 1/căn 2<= x căn x+y căn y<= 1
Cho các số nguyên x,y,z khác không, thỏa mãn x+y+z=0.
Chứng minh rằng căn (1/ x^2 + 1/y^2 + 1/z^2) là số hữu tỉ
Ta có:
\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+0}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2\left(x+y+z\right)}{xyz}}\)
\(=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\) là số hữu tỉ
cho x,y,z là các số thực thỏa mãn -1<=x,y,z <=1 và x+y+z =o. tìm GTNN biểu thức :P=căn bậc 2 1+x+y^2 +căn bậc 2 của 1+y+z^2 + căn bậc 2 của 1+z+x^2
Cho x,y,z,> 0 và x+y+z=1
Cm căn x^2+1/x^2+căn y^2+1/y^2+căn z^2+1/z^2>=căn 82
cho x,y là các số thực dương.CMR\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}-\dfrac{3x}{y}-\dfrac{3y}{x}+4\ge0\)
Đặt vế trái là P
Ta có: \(P=\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+2\right)-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\)
Đặt \(a=\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt[]{\dfrac{xy}{xy}}=2\Rightarrow a-2\ge0\)
\(\Rightarrow P=a^2-3a+2=\left(a-2\right)\left(a-1\right)\ge0\) (đpcm)
Dấu "=" xảy ra khi \(a=2\) hay \(x=y\)
Cho x,y,z là các số thực dương thỏa mãn căn x + căn y - căn z = 0
Chứng minh rằng
1
x+y-z
+1
y+z-x
+1
z+x-y
=0
Cho x,y,z là các số thực dương : xy+yz+xz=1. Tìm min của P = ( căn( x2 +1) + căn(y2 +1) + căn(z2 +1))/(x+y+z)
\(\frac{\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}}{\sqrt{x+y+z}}\)
Đặng Viết Thái tử đúng rồi còn mẫu không có căn
\(x = { \sqrt{x^2+1} + \sqrt{y^2+1} + \sqrt{z^2+1} \over x + y+z}\)
Cho x,y,z thuộc R thỏa mãn |x|,|y|,|z|>0. Chứng minh căn(1-x^2)+căn(1-y^2)+căn(1-z^2)=<căn(9-(x+y+z)^2)
1.Tìm GTNN của hàm số f(x)=\(Căn x +2/x+1\)
Với x》0
2.Tìm các số dương x y sao cho \(25/căn x +4/ căn y = 14-căn x -căn y\)