\(x+y-2\left(\sqrt{x}+\sqrt{y}\right)+2\ge0\)
\(\Leftrightarrow x+y-2\sqrt{x}-2\sqrt{y}+2\ge0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2\ge0\)
Do : \(\left\{{}\begin{matrix}\left(\sqrt{x}-1\right)^2\ge0\\\left(\sqrt{y}-1\right)^2\ge0\end{matrix}\right.\Rightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2\ge0\)
Vậy đẳng thức được chứng minh !