Cho x+y = 1 ; x>0 ; y>0. Tìm min của :
b) \(\dfrac{a^2}{x}+\dfrac{b^2}{y}\) ( a,b là hằng số dương đã cho )
c) \(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\)
P/s : cần gấp :(
Cho x + y+z =0
a, Tính \(x^3+y^3+z^3-3xyz\)
b, Tính \(\left(\dfrac{x}{y}+1\right)\left(\dfrac{y}{z}+1\right)\left(\dfrac{z}{x}+1\right)\)
c, \(\dfrac{1}{y^2+z^2-z^2}+\dfrac{1}{x^2+z^2-y^2}+\dfrac{1}{x^2+y^2-z^2}\)
a) Cho các số dương x, y, z có tổng bằng 1. Tìm GTNN của \(A=\dfrac{x+y}{xyz}\)
b) Cho các số dương x, y, z, t có tổng bằng 2.
Tìm GTNN của \(B=\dfrac{\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
Bài 1: Thực hiện phép tính:
a, \(\left(\dfrac{x}{x+1}+\dfrac{x-1}{x}\right):\left(\dfrac{x}{x+1}-\dfrac{x-1}{x}\right)\)
b, \(\left(1+\dfrac{x}{y}+\dfrac{x^2}{y^2}\right).\left(1-\dfrac{x}{y}\right).\dfrac{y^2}{x^3-y^3}\)
Bài 2: Với giá trị nào của x thì giá trị của mỗi biểu thức sau có giá trị bằng 0
a, \(\dfrac{5}{x-2}-\dfrac{1}{x+2}+\dfrac{4}{x^2}\)
b, \(\dfrac{2}{x^2-x+1}+x+1\)
Bài 3: Cho biểu thức: A = \(\left(\dfrac{4}{x-4}-\dfrac{4}{x+4}\right).\dfrac{x^2+8x+16}{32}\)
a, Tìm điều kiện của x để giá trị của biểu thức M được xác định
b, Tìm giá trị của x để giá trị của biểu thức M = \(\dfrac{1}{3}\)
c, Tìm giá trị của x để giá trị của biểu thức M = 3
Cho \(\dfrac{x}{a}\) + \(\dfrac{y}{b}+\dfrac{z}{c}=2\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\) ( a,b,c,x,y,z ≠ 0) Tính giá trị của biểu thức
D = \(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2\)
Cho x,y,z là các số dương. CMR:
a) (x+y+z)(\(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\)) ≥\(\dfrac{9}{2}\)
b) (x+y+z+t)(\(\dfrac{1}{x+y+z}+\dfrac{1}{y+z+t}+\dfrac{1}{z+t+x}+\dfrac{1}{t+x+y}\)) ≥\(\dfrac{16}{3}\)
c) \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) ≥\(\dfrac{1}{2}\left(a+b+c\right)\)
Chứng minh các bất đẳng thức:
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\ge2xy\)
b) \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với \(x>0,y>0\)
Cho các số dương x, y thỏa mãn x + y = 1 . Tìm GTNN của P = \(\left(2x+\dfrac{1}{x}\right)^2+\left(2x+\dfrac{1}{y}\right)^2\)
1) Cho x- y= 7. Tính \(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)
\(N=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-2017\)
2) Cho x+ y= 3 và \(x^2+y^2=5\) Tính \(x^3+y^3\)
x- y= 5 và \(x^2+y^2=1\)Tính \(x^3-y^3\)
3)Tìm x, y sao cho
a) \(A=2x^2+9y^2-6xy-6x-12y+2018\) có GTNN
b)\(B=-x^2+2xy-4y^2+2x+10y-8\) có GTLN
4) Cho \(x+y=a;x^2+y^2=b;x^3+y^3=c\) . Chứng minh \(a^3-3ab+2c=0\)
5) Cho a>b>c. Thỏa mãn \(3a^2+3b^2=10ab\)
Tính \(P=\dfrac{a-b}{a+b}\)
6) Cho x>y>0 và \(2x^2+2y^2=5xy\) Tính \(E=\dfrac{x+y}{x-y}\)
7) Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ca}{b^2}\)