1) Cho x- y= 7. Tính \(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)
\(N=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-2017\)
2) Cho x+ y= 3 và \(x^2+y^2=5\) Tính \(x^3+y^3\)
x- y= 5 và \(x^2+y^2=1\)Tính \(x^3-y^3\)
3)Tìm x, y sao cho
a) \(A=2x^2+9y^2-6xy-6x-12y+2018\) có GTNN
b)\(B=-x^2+2xy-4y^2+2x+10y-8\) có GTLN
4) Cho \(x+y=a;x^2+y^2=b;x^3+y^3=c\) . Chứng minh \(a^3-3ab+2c=0\)
5) Cho a>b>c. Thỏa mãn \(3a^2+3b^2=10ab\)
Tính \(P=\dfrac{a-b}{a+b}\)
6) Cho x>y>0 và \(2x^2+2y^2=5xy\) Tính \(E=\dfrac{x+y}{x-y}\)
7) Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ca}{b^2}\)
Bác google được sinh ra để làm gì, đăng nhiều vc, google có hết mà ;v
Bài 1,2,3,4 đơn giản, tự làm :v
7) \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ca}{b^2}=\dfrac{abc}{c^3}+\dfrac{abc}{a^3}+\dfrac{abc}{b^3}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=abc.\dfrac{1}{3abc}=\dfrac{1}{3}\)
P/S: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
5) ĐK: a>b>0
\(3a^2+3b^2=10ab\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)
Tự phân tích
Mà a>b>0=> Chọn a=3b
Thay vào
Bài 6 tương tự bài 5
Có bất mãn chỗ nào thì ib nha bạn :))