Gỉa các phương trình sau :
a ) \(\frac{15x}{x^2+3x-4}=\frac{12}{x+4}+\frac{4}{x-1}+1\)
b) \(x\left(x-2\right)\left(x-1\right)\left(x+1\right)=24\)
Giaỉ các phương trình sau :
a) \(\frac{15x}{x^2+3x-4}=\frac{12}{x+4}+\frac{4}{x-1}+1\)
b) \(x\left(x-2\right)\left(x-1\right)\left(x+1\right)=24\)
thèm ăn cục đường phèn quá.
a)dk :\(x\ne1;x\ne-4\)
quy đồng suy ra:
\(\frac{15x}{x^2+3x-4}=\frac{12\left(x-1\right)+4\left(x+4\right)+x^2+3x-4}{x^2+3x-4}=\frac{x^2+19x}{x^2+3x-4}\)
bỏ mẫu suy ra :15x=x2+19x
<=>x2+4x=0
<=>x(x+4)=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(loại\right)\end{cases}}\) do điều kiện xác định.
vậy nghiệm của phương trình là x=0 0 0 0 một lik cho bạn
Giải các phương trình
a) \(\frac{15x}{x^2+3x-4}=\frac{12}{x+4}+\frac{4}{x-1}+1\)
b) \(x\left(x-2\right)\left(x-1\right)\left(x+1\right)=24\)
c) \(\frac{x^2-2x+2}{x-1}+\frac{x^2-8x+20}{x-4}=\frac{x^2-4x+6}{x-2}+\frac{x^2-6x+12}{x-3}\)
Giải phương trình sau \(\frac{15x}{x^2+3x-4}-1=12.\left(\frac{1}{x+4}+\frac{1}{3x-3}\right)\)
ĐẠI SỐ
1. Giải các phương trình sau :
a) \(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)
b) \(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)
c) \(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
2. Giải các bất phương trình sau :
a) \(5+\frac{x+4}{5}< x-\frac{x-2}{2}+\frac{x+3}{3}\)
b) \(x+1-\frac{x-1}{3}< \frac{2x+3}{2}+\frac{x}{3}+5\)
c) \(\frac{\left(3x-2\right)^2}{3}-\frac{\left(2x+1\right)^2}{3}\le x\left(x+1\right)\)
d) \(\frac{2x+3}{4}-\frac{x+1}{3}\ge\frac{1}{2}-\frac{3-x}{5}\)
\(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)
\(< =>\frac{5x-131}{19}=\frac{1631-52x-\frac{38x-684}{5}}{209}\)
\(< =>\left(5x-131\right)209=\left(1631-52x-\frac{38x-684}{5}\right)19\)
\(< =>55x-1441=1631-52x-\frac{38x-684}{5}\)
\(< =>3072-107x=\frac{38x-684}{5}\)
\(< =>\left(3072-107x\right)5=38x-684\)
\(< =>15360-535x-38x-684=0\)
\(< =>14676=573x< =>x=\frac{14676}{573}=\frac{4892}{191}\)
nghệm xấu thế
\(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)
\(< =>\frac{8x+176}{45}-\frac{41x+817}{45}=\frac{11x+415}{45}\)
\(< =>993-33x-11x-415=0\)
\(< =>578=44x< =>x=\frac{289}{22}\)
Bài 1:
b) Phương trình đã cho tương đương với phương trình:
\(\frac{8\left(x+22\right)-55\left(7x+149\right)-6\left(x+12\right)}{45}=\frac{9\left(x+35\right)+2\left(x+50\right)}{45}\)
\(\Leftrightarrow44x=-1056\)
\(\Leftrightarrow x=-24\)
Vậy x=-24 là nghiệm của phương trình
c) Phương trình đã cho tương đương với phương trình:
\(\frac{3x+6}{70}-\frac{x+4}{24}=\frac{32x+19}{60}+\frac{2}{3}\)
\(\Leftrightarrow12\left(3x+6\right)-35\left(x+4\right)=14\left(32x+19\right)+560\)
\(\Leftrightarrow-447x=894\)
\(\Leftrightarrow x=-2\)
Vậy x=-2 là nghiệm của phương trình
Giải phương trình:
1.\(\frac{x-5}{x-5}+\frac{x-6}{x-5}+\frac{x-7}{x-5}+...+\frac{1}{x-5}=4\left(x\in N\right)\)
2.\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+...+\frac{1}{x^2+15x+56}=\frac{1}{14}\)
3.\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{x\left(x+2\right)}\right)=\frac{31}{16}\left(x\in N\right)\)
4.\(8\left(x^2+\frac{1}{x^2}\right)-34\left(x+\frac{1}{x}\right)+51=0\)
5.\(6x^4-5x^3-38x^2-5x+6=0\)
Giải phương trình:
a, \(\frac{1}{2}\left(x+1\right)+\frac{1}{4}\left(x+3\right)=3-\frac{1}{3}\left(x+2\right)\)
b, \(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
c,3(x-1)(2x-1)=5(x+8)(x-1)
d, \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
Giải bất phương trình và phương trình sau :
a, \(\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)
b, \(\frac{x^2-4-\left|x-2\right|}{2}=x\left(x-1\right)\)
Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4
Giải bất phương trình và phương trình sau :
\(a,\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)
\(b,\frac{x^2-4-\left|x-2\right|}{2}=x\left(x+1\right)\)
Giải các phương trình sau :
\(a,6x^2-5x+3=2x-3x\left(3-2x\right)\)
\(b,\frac{2\left(x-4\right)}{4}-\frac{3+2x}{10}=x+\frac{1-x}{5}\)
\(c,\frac{2x}{3}+\frac{3x-5}{4}=\frac{3\left(2x-1\right)}{2}-\frac{7}{6}\)
\(d,\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)
\(e,\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)
a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)
<=> \(6x^2-5x+3-2x+9x-6x^2=0\)
<=> \(2x+3=0\)
<=> \(x=\frac{-3}{2}\)
b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)
<=> \(10x-40-6-4x=20x+4-4x\)
<=> \(6x-46-16x-4=0\)
<=> \(-10x-50=0\)
<=> \(-10\left(x+5\right)=0\)
<=> \(x+5=0\)
<=> \(x=-5\)
c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)
<=> \(8x+9x-15=36x-18-14\)
<=> \(8x+9x-36x=+15-18-14\)
<=> \(-19x=-14\)
<=> \(x=\frac{14}{19}\)
d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
<=> \(12x+10-10x-3=8x+4x+2\)
<=> \(2x-7=12x+2\)
<=> \(2x-12x=7+2\)
<=> \(-10x=9\)
<=> \(x=\frac{-9}{10}\)
e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)
<=> \(x^2-6x-12-\left(x-4^2\right)=0\)
<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)
<=> \(x^2-6x-12-x^2+8x-16=0\)
<=> \(2x-28=0\)
<=> \(2\left(x-14\right)=0\)
<=> x-14=0
<=> x=14
Luffy , cậu sai câu c nhé , kia là -17 ạ => x=17/19