bài 1 giải phương trình
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
1) \(\frac{3x-1}{4}+\frac{2x-3}{3}=\frac{x-1}{2}\) Mc : 12
\(\Leftrightarrow\) \(\frac{3.\left(3x-1\right)}{12}+\frac{4.\left(2x-3\right)}{12}=\frac{6.\left(x-1\right)}{12}\)
\(\Leftrightarrow\) 9x - 3 + 8x - 12 = 6x - 6
\(\Leftrightarrow\) 9x + 8x - 6x = 3 + 12 - 6
\(\Leftrightarrow\) 11x = 9
\(\Leftrightarrow\) x = 0,8
Vậy S = {0,8}
2) \(\frac{x+1}{2}-\frac{x+3}{12}=3-\frac{5-3x}{3}\) Mc : 12
\(\Leftrightarrow\) \(\frac{6.\left(x+1\right)}{12}-\frac{x+3}{12}=\frac{12.3}{12}-\frac{4.\left(5-3x\right)}{12}\)
\(\Leftrightarrow\) 6x + 6 - x + 3 = 36 - 20 - 12x
\(\Leftrightarrow\) 6x - x + 12x = -6 - 3 + 36 - 20
\(\Leftrightarrow\) 17x = 7
\(\Leftrightarrow\) x = \(\frac{7}{17}\)
Vậy S = {\(\frac{7}{17}\)}
3) x - \(\frac{x+1}{3}\) = \(\frac{2x-1}{5}\) Mc : 15
\(\Leftrightarrow\) \(\frac{15.x}{15}-\frac{5.\left(x+1\right)}{15}=\frac{3.\left(2x-1\right)}{15}\)
\(\Leftrightarrow\) 15x - 5x - 5 = 6x - 3
\(\Leftrightarrow\) 15x - 5x - 6x = 5 - 3
\(\Leftrightarrow\) 4x = 2
\(\Leftrightarrow\) x = \(\frac{2}{4}=\frac{1}{2}\)
Vậy S = {\(\frac{1}{2}\)}
4) \(\frac{2x+7}{3}-\frac{x-2}{4}=-2\) Mc : 12
\(\Leftrightarrow\) \(\frac{4.\left(2x+7\right)}{12}-\frac{3.\left(x-2\right)}{12}=\frac{12.\left(-2\right)}{12}\)
\(\Leftrightarrow\) 8x + 28 -3x + 6 = -24
\(\Leftrightarrow\) 8x - 3x = -28 - 6 -24
\(\Leftrightarrow\) 5x = -58
\(\Leftrightarrow\) x = -11,6
Vậy S = {-11,6}
5) \(\frac{2x-3}{4}-\frac{4x-5}{3}=\frac{5-x}{6}\) Mc : 12
\(\Leftrightarrow\) \(\frac{3.\left(2x-3\right)}{12}-\frac{4.\left(4x-5\right)}{12}=\frac{2.\left(5-x\right)}{12}\)
\(\Leftrightarrow\) 6x - 9 - 16x + 20 = 10 - 2x
\(\Leftrightarrow\) 6x - 16x + 2x = 9 - 20 + 10
\(\Leftrightarrow\) -8x = -1
\(\Leftrightarrow\) x = \(\frac{1}{8}\)
Vậy S = {\(\frac{1}{8}\)}
6) \(\frac{12x+1}{4}=\frac{9x+1}{3}-\frac{3-5x}{12}\) Mc : 12
\(\Leftrightarrow\frac{3.\left(12x+1\right)}{12}=\frac{4.\left(9x+1\right)}{12}-\frac{3-5x}{12}\)
\(\Leftrightarrow\) 36x + 3 = 36x + 4 - 3 + 5x
\(\Leftrightarrow\) 36x - 36x - 5x = -3 + 4 - 3
\(\Leftrightarrow\) -5x = -2
\(\Leftrightarrow x=\frac{2}{5}\)
7) \(\frac{x+6}{4}\) - \(\frac{x-2}{6}-\frac{x+1}{3}=0\) Mc : 12
\(\Leftrightarrow\) \(\frac{3.\left(x+6\right)}{12}-\frac{2.\left(x-2\right)}{12}-\frac{4.\left(x+1\right)}{12}=0\)
\(\Leftrightarrow\) 3x + 18 - 2x + 4 - 4x - 4 = 0
\(\Leftrightarrow\) 3x - 2x - 4x = -18 - 4 + 4
\(\Leftrightarrow\) -3x = -18
\(\Leftrightarrow\) x = 6
Vậy S = {6}
8) x\(^2\) - x - 6 = 0
\(\Leftrightarrow\) x\(^2\) + 2x - 3x - 6 = 0
\(\Leftrightarrow\) x.(x + 2) - 3.(x + 2) = 0
\(\Leftrightarrow\) (x - 3).(x + 2) = 0
\(\Leftrightarrow\) x - 3 = 0 hoặc x + 2 = 0
\(\Leftrightarrow\) x = 3 hoặc x = -2
Vậy S = {3; -2}
Giải các bất phương trình sau :
a) \(15-2x\left(1-x\right)< 2x^2-4x+5\)
b) \(x^2-\frac{x\left(3x+2\right)}{3}< \frac{x-6}{3}\)
c) \(1+\frac{x+4}{3}< x-\frac{x-3}{2}\)
d) \(\left(\frac{2x+1}{2}\right)^2+\frac{3x\left(1-x\right)}{3}-\frac{5x}{4}\le1\)
Giải các phương trình sau:
a) \(\left(\frac{x-2}{x-1}\right)^2-5\left(\frac{x+2}{x+1}\right)^2+4\left(\frac{x^2-4}{x^2-1}\right)=1\)
b) \(\left(\frac{x-1}{x}\right)^2+\left(\frac{x-1}{x-2}\right)^2=\frac{40}{9}\)
c) \(x.\frac{4-x}{x+2}.\left(\frac{8-2x}{x+2}\right)=3\)
d) \(\frac{1}{3x-2020}+\frac{1}{4x-2018}+\frac{1}{5x-2017}=\frac{1}{12x-2019}\)
1,Giải PT
a,\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)
b,\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
c,\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
1. a, tính gt nhỏ nhất của biểu thức
A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b, tính gt lớn nhất của biểu thúc
B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
2. cho bt Q=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)
a, (x-1)3 - x(x-1)2 = 5(2-x) - 11(x+2)
b, (x-2)3 + (3x-1)(3x+1) = (x+1)3
c, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{5}\)
d, \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}=\frac{13x+4}{21}\)
e, \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
Giải các phương trình sau
a) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
b) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
c) \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)
d) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)
e) \(\frac{1}{x-2}+\frac{5}{x+1}=\frac{3}{2-x}\)
f) \(\frac{5x}{2x+2}+1=-\frac{6}{x+1}\)
g) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)
h) \(\frac{3x}{x-2}-\frac{x}{x-5}=\frac{3x}{\left(x-2\right)\left(5-x\right)}\)
Giải phương trình (áp dụng phương pháp đặt ẩn phụ):
a) (x - 1)3 + x3 + (x + 1)3 = (x + 2)3
b) (6x + 7)2(3x + 4)(x + 1) = 6
c) \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)