Rút gọn
\(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+................+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
Thêm một bài tương tự nha
Rút gọn :
\(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+......+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
Ta có
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n^2+n}\)(nhân lượng liên hiệp nhé)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào bài toán ta có
\(\frac{1}{2\sqrt{1}+1.\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
Rút gọn P biết P = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
Rút gọn:
\(\frac{1^2}{2^2-1}.\frac{3^2}{4^2-1}.\frac{5^2}{6^2-1}...\frac{99^2}{100^2-1}\)
=1.1.3.3.5.5...99.99/1.3.3.5.5.7.....99.101
=(1.3.5..99/1.3.5....99).(1.3.5....99/3.5.7...101)
=1.1/101
=1/101
=1.1.3.3.5.5...99.99/1.3.3.5.5.7.....99.101
=(1.3.5..99/1.3.5....99).(1.3.5....99/3.5.7...101)
=1.1/101
=1/101
Rút gọn biểu thức sau :
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
Ta xét biểu thức sau :
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left[\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\right]}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)(với n > 0)
Áp dụng : \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)+...+\left(\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\right)\)
\(=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
rút gọn
\(\sqrt{1^2+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}....+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
Dễ hiểu với cách xét bài toán phụ sau:
Với \(a+b+c=0\) và a,b,c khác 0
Ta có: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Thật vậy, ta CM như sau:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{a+b+c}{abc}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{0}{abc}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
=> BT được chứng minh
Áp dụng vào bài chính, ta được:
\(\sqrt{1^2+\frac{1}{1^2}+\frac{1}{2^2}}=\sqrt{\frac{1}{1^2}+\frac{1}{1^2}+\frac{1}{\left(-2\right)^2}}=\sqrt{\left(\frac{1}{1}+\frac{1}{1}-\frac{1}{2}\right)^2}=1+1-\frac{1}{2}\)
Tương tự:
\(\sqrt{1^2+\frac{1}{2^2}+\frac{1}{3^2}}=1+\frac{1}{2}-\frac{1}{3}\)
...
\(\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}=1+\frac{1}{99}-\frac{1}{100}\)
Cộng vế lại ta được:
\(BT=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{99}-\frac{1}{100}\)
\(=100-\frac{1}{100}=99,99\)
Rút gọn A=\(\frac{\left(1+2+3+......+99+100\right).\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right).\left(63.1,2-21.3,6+1\right)}{1-2+3-4+5-6+.........+99-100}\)=...
Rút gọn B= \(\frac{\left(1+2+3+...+99+100\right)\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right)\left(63.1,2-21.3,6+1\right)}{1-2+3-4+5-6+...+99-100}\)
\(\frac{\frac{2000}{11}+\frac{2000}{12}+...+\frac{2000}{100}}{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}}\)
Hãy rút gọn
Đặt \(A=\frac{\frac{2000}{11}+\frac{2000}{12}+...+\frac{2000}{100}}{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}}\)
\(\Rightarrow A=\frac{2000.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)+...+\left(1+\frac{98}{2}\right)+1}\)
\(\Rightarrow A=\frac{2000.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}}\)
\(\Rightarrow A=\frac{2000.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{100.\left(\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}\right)}\)
\(\Rightarrow A=\frac{20.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}}\)
\(\Rightarrow A=\frac{\frac{20}{11}+\frac{20}{12}+..+\frac{20}{100}}{\frac{1}{99}+\frac{1}{98}+..+\frac{1}{2}+\frac{1}{100}}\)
Rút gọn A=\(\frac{\left(1+2+3+.......+99+100\right).\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right).\left(63.1,2-21.36+1\right)}{1-2+3-4+5-6+....+99-100}\)là .....