Cho x=\(\sqrt{2+\sqrt{2+\sqrt{3}}}\)-\(\sqrt{6-3\sqrt{2+\sqrt{3}}}\). CMR: x4-16x2+32=0
Biết x=\(\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)
Tính giá trị S=x4-16x2
Mn giúp dùm em với ạ, em đang cần gấp í=(((
Giải
Ta có:
\(x=\sqrt{2+\sqrt{2+\sqrt{3}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}}\)
Khi đó:
\(x^2=\left(\sqrt{2+\sqrt{2+\sqrt{3}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}}\right)^2\\ =2+\sqrt{2+\sqrt{3}}+6-3\sqrt{2+\sqrt{3}}-2\sqrt{\left(2+\sqrt{2+\sqrt{3}}\right)\left(6-3\sqrt{2+\sqrt{3}}\right)}\\ =8-2\sqrt{2+\sqrt{3}}-2\sqrt{12-3\left(2+\sqrt{3}\right)}\\ =8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-2\sqrt{6-3\sqrt{3}}\\ =8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-\sqrt{2}.\sqrt{12-6\sqrt{3}}\\ =8-\sqrt{2}.\left(\sqrt{4+2\sqrt{3}}+\sqrt{12-6\sqrt{3}}\right)\\ =8-\sqrt{2}.\left(\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}+\sqrt{9-2.3\sqrt{3}+\left(\sqrt{3}\right)^2}\right)\\ 8-\sqrt{2}.\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(3-\sqrt{3}\right)^2}\right)\\ =8-\sqrt{2}.\left(\sqrt{3}+1+3-\sqrt{3}\right)\\ =8-4\sqrt{2}\\ \Rightarrow x^4-16x^2=\left(8-4\sqrt{2}\right)^2-16.\left(8-4\sqrt{2}\right)\\ =96-64\sqrt{2}-128+64\sqrt{2}=-32\)
Vậy \(S=-32\)
Cho pt :\(x^4-16x^2+32=0\)
CMR x=\(\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\) là 1 nghiệm của pt
CMR: \(x^4-16.x^2+32=0\)
có 1 nghiệm là:
\(x=\sqrt{6-3.\sqrt{2+\sqrt{3}}}+\sqrt{2+\sqrt{2+\sqrt{3}}}\)
Câu hỏi của Phạm Thị Thu Trang - Toán lớp 9 - Học toán với OnlineMath
Xem lại đề đi. Thế x ngược lại đâu có đúng
Cho Xo=\(\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)
CMR: Xo là nghiệm phương trình \(x^4-16x^2+32=0\)
Cho a=\(\sqrt{5}\) + \(\sqrt{3}\)
a) Tính a3
b) Chứng minh x4 - 16x2 + 4 = 0
a) Ta có: \(a^3\)
\(=\left(\sqrt{5}+\sqrt{3}\right)^3\)
\(=5\sqrt{5}+15\sqrt{3}+9\sqrt{5}+3\sqrt{3}\)
b) Ta có: \(a^4-16a^2+4=0\)
\(\Leftrightarrow\left(\sqrt{5}+\sqrt{3}\right)^4-16\left(\sqrt{5}+\sqrt{3}\right)^2+4=0\)
\(\Leftrightarrow\left(8+2\sqrt{15}\right)^2-16\left(8+2\sqrt{15}\right)+4=0\)
\(\Leftrightarrow64+32\sqrt{15}+60-128-32\sqrt{15}+4=0\)
\(\Leftrightarrow0=0\)(đúng)
Cho phương trình: \(x^4-16x^2+32=0\)(với \(x\in R\))
CMR: \(x=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)là 1 nghiệm của pt trên ?
\(x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3.\left(2-\sqrt{3}\right)}\)
\(\Leftrightarrow8-x^2=2\sqrt{2+\sqrt{3}}+2\sqrt{3.\left(2-\sqrt{3}\right)}\)
\(\Leftrightarrow x^4-16x^2+64=4\left(2+\sqrt{3}+6-3\sqrt{3}+2\sqrt{3}\right)\)
\(\Leftrightarrow x^4-16x^2+64=32\)
\(\Leftrightarrow x^4-16x^2+32=0\)
Vậy có điều phải chứng minh.
giải phương trình sau:
a) \(4x^2+\left(8x-4\right).\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
b) \(8x^3-36x^2+\left(1-3x\right)\sqrt{3x-2}-3\sqrt{3x-2}+63x-32=0\)
c) \(2\sqrt[3]{3x-2}-3\sqrt{6-5x}+16=0\)
d) \(\sqrt[3]{x+6}-2\sqrt{x-1}=4-x^2\)
Chứng minh rằng số x0=\(\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)là 1 nghiệm của pt x\(x^4+16^2+32=0\)
Chứng minh rằng x0=\(\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\) là một nghiệm của phương trình: \(x^4-16x^2+32=0\)
Ta có:
\(x_0^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3\left(2-\sqrt{3}\right)}\)
\(\Leftrightarrow\left(\dfrac{8-x_0^2}{2}\right)^2=\left(\sqrt{2+\sqrt{3}}+\sqrt{3\left(2-\sqrt{3}\right)}\right)^2\)
\(=8-2\sqrt{3}+2\sqrt{3}=8\)
\(\Rightarrow x_0^4-16x_0^2+64=32\)
\(\Rightarrow x_0^4-16x_0^2+32=0\)
Vậy ......