Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Minh Quang
Xem chi tiết
Ngô Minh Đức
Xem chi tiết
ghdoes
Xem chi tiết
Tin Trần Thị
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Yen Nhi
23 tháng 11 2021 lúc 12:34

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

Khách vãng lai đã xóa
Khánh Huyền
Xem chi tiết
Lê Thị Thục Hiền
7 tháng 6 2021 lúc 17:23

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)

My
Xem chi tiết
Phạm Tuấn Đạt
9 tháng 2 2019 lúc 21:38

\(\Rightarrow x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

\(\Rightarrow1\ge2xy\)

\(\Rightarrow\frac{1}{2}\ge xy\)

Có \(x+y\ge2\sqrt{xy}\ge2\sqrt{\frac{1}{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Vậy \(Min_{x+y}=\sqrt{2}\)

Làm tương tự với max

kudo shinichi
9 tháng 2 2019 lúc 21:58

Thêm đk: x,y>0

Tìm max:

Áp dụng BĐT bunhiacopxki ta có:

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2\ge\left(x+y\right)^2\)

\(\Leftrightarrow\sqrt{2}\ge x+y\)

Dấu " = " xảy ra <=> x=y

KL:...............................

tth_new
10 tháng 2 2019 lúc 6:47

Tìm Max nhá:

\(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2-2xy=1\)

Suy ra \(\left(x+y\right)^2=1+2xy\)

Lại có: \(1=x^2+y^2\ge2xy\)

Suy ra \(\left(x+y\right)^2=1+2xy\le1+1=2\Leftrightarrow x+y\le\sqrt{2}\)

Dấu "=" xảy ra khi \(x=y=\sqrt{\frac{1}{2}}\)

Ê đạt: cái của bạn làm là tìm max chứ đâu phải min?

Thu hương Phạm
Xem chi tiết
Dương Thị Ngọc Ánh
Xem chi tiết
Team Free Fire 💔 Tớ Đan...
21 tháng 12 2019 lúc 22:31

https://olm.vn/hoi-dap/detail/83670859470.html

Khách vãng lai đã xóa
Team Free Fire 💔 Tớ Đan...
21 tháng 12 2019 lúc 22:31

https://olm.vn/hoi-dap/detail/83670859470.html

https://olm.vn/hoi-dap/detail/83670859470.html

Khách vãng lai đã xóa