Tìm GTLN của biểu thức:
a) \(A=-2x+\sqrt{x}\)
b) \(B=-x+5\sqrt{x}\)
c) \(C=-x+1+2\sqrt{x-1}\)
1. Cho số nguyên dương x.
a, Tìm GTNN của biểu thức \(P=\sqrt[3]{10^x-2}+\sqrt{x^x+3}+\sqrt{\left(\pi^2+1\right)^{x-1}+3}\).
b, Tìm GTLN của biểu thức \(Q=\sqrt[5]{\left(6x^2+5\right)^{1-x}}+\sqrt[3]{3-2x^2}\).
c, Chứng minh rằng: \(\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\ge1\).
2. Cho tam giác OEF vuông tại O có OE = a, OF = b, EF = c thỏa mãn điều kiện a, b, c là các số dương. Chứng minh rằng biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) không nhận bất kì giá trị nguyên dương nào.
Tìm GTLN của biểu thức:
a. \(A=\dfrac{1}{x-\sqrt{x}+1}\)
b. \(B=\dfrac{2x-2\sqrt{x}+5}{x-\sqrt{x}+2}\)
Tìm GTLN của biểu thức
a) \(A=\dfrac{1}{x-\sqrt{x}+2}\)
b) \(B=\dfrac{2x-2\sqrt{x}+5}{x-\sqrt{x}+2}\)
1. Cho A= \(\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right):\frac{2\sqrt{x}-1}{\sqrt{x}-x}\)
a, Tìm ĐKXĐ và rút gọn.
b,Tìm x để A=\(\frac{2}{3}\).
c,Biểu thức A có GTLN không? Vì sao?
\(\text{Tìm GTLN, GTNN của biểu thức: }\)
\(1,A=\sqrt{x-2}+\sqrt{4-x}\)
\(2,B=\sqrt{3+x}+\sqrt{3-x}\)
\(3,C=2x+\sqrt{5-x^2}\)
1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ : \(2\le x\le4\)
\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
Áp dụng bđt AM - GM ta có :
\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)
\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)
Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2
=> A = \(\sqrt{2}\)
Vậy \(\sqrt{2}\le A\le2\)
tìm giá trị của x để biểu thức có nghĩa
a,\(\sqrt{x^2-x+1}\)
b,\(\sqrt{x^2-5}\)
c,\(\sqrt{-x^2+2x-1}\)
d,\(\sqrt{\dfrac{-2}{x-1}}\)
Lời giải:
a. Để bt có nghĩa thì $x^2-x+1\geq 0$
$\Leftrightarrow (x-\frac{1}{2})^2+\frac{3}{4}\geq 0(*)$
$\Leftrightarrow x\in\mathbb{R}$ (do $(*)$ luôn đúng với mọi số thực $x$)
b.
Để bt có nghĩa thì $x^2-5\geq 0$
$\Leftrightarrow (x-\sqrt{5})(x+\sqrt{5})\geq 0$
$\Leftrightarrow x\geq \sqrt{5}$ hoặc $x\leq -\sqrt{5}$
c.
Để bt có nghĩa thì: $-x^2+2x-1\geq 0$
$\Leftrightarrow -(x^2-2x+1)\geq 0$
$\Leftrightarrow x^2-2x+1\leq 0$
$\Leftrightarrow (x-1)^2\leq 0(*)$
Do $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$
Nên $(*)\Leftrightarrow (x-1)^2=0$
$\Leftrightarrow x=1$
d.
Để bt có nghĩa thì \(\left\{\begin{matrix} x-1\neq 0\\ \frac{-2}{x-1}\geq 0\end{matrix}\right.\Leftrightarrow x-1<0\Leftrightarrow x<1\)
Tìm GTLN, GTNN của các biểu thức sau :
a) A= \(\sqrt{4-x^2}\)
b) B= \(1-\sqrt{-x^2+2x+5}\)
c) \(\frac{1}{3-\sqrt{1-x^2}}\)
Tìm GTLN (nếu có) và GTNN (nếu có) của các biểu thức sau:
a) \(1+\sqrt{2-x},\sqrt{x-3}-2,1-3\sqrt{1-2x}\)
b) \(\sqrt{4-x^2};\sqrt{2x^2-x+3};1-\sqrt{-x^2+2x+5}\)
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
Cho biểu thức : B = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
a) Tìm ĐKXĐ và rút gọn biểu thức B
b) So sánh B với 2
c) Tìm GTLN của A = B - \(9\sqrt{x}\)