Cho tam giác ABC vuông góc tại A có \(\frac{AB}{AC}\)= \(\frac{3}{4}\)Tính AC, AB
Bài 1: Cho tam giác ABC cân tại B, kẻ CH vuông góc AB. Biết AH= 1cm, BH= 4cm. Tính độ dài AC.
Bài 2: Cho tam giác ABC vuông tại A. Cạnh AB= 5cm đường cao AH, BH= 3cm, CH= 8cm. Tính AC.
Bài 3: Cho tam giác ABC vuông tại A, có \(\frac{AB}{BC}=\frac{3}{5}\)và AC= 16cm. Tính độ dài các cạnh AB=BC.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
Cho tam giác ABC vuông tại A với\(\frac{AB}{AC}=\frac{3}{4}\)và BC=15cm. Tia phân giác của góc C cắt AB tại D. Kẻ DE vuông với BC(e thuộc BC)
a, cm: AC=CE
b, tính Ab, AC
c,Trên tia AB lấy F sao cho AF=Ac. Kẻ Fx vuông góc vs FA, cắt DE tại M. Tính DCM
Bài 1: Cho tam giác ABC vuông tại A, biết \(tgB=\frac{4}{3}\)và BC = 10. Tính AB, AC.
Bài 2: Cho tam giác ABC cân tại A, AB=AC=17, BC=16. Tính đường cao AH và góc A, góc B của tam giác ABC.
Bài 3: Cho tam giác ABC có \(\widehat{B}=60\) ,các hình chiếu vuông góc của AB và AC lên BC theo thứ tự bằng 12 và 18. Tính các góc và đường cao của tam giác ABC.
Cho tam giác ABC vuông tại A có \(\frac{AB}{AC}\)= \(\frac{3}{4}\), BC = 15cm. Tính AB, AC
Từ gt: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB^2}{AC^2}=\frac{9}{16}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}.\)
Theo Py-ta-go ta có: \(AB^2+AC^2=BC^2.\)
\(\Leftrightarrow AB^2+AC^2=15^2=225\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{225}{25}=9.\)
\(\Rightarrow AB^2=9\cdot9=81\Rightarrow AB=9\)
\(\Rightarrow AC^2=9\cdot16=144\Rightarrow AC=12\)
VẬY AB=9 CM và AC=12CM
Ta có: AB/AC=3/4 => AB/3=AC/4
=>. Đặt AB/3=AC/4=k
=> AB=3k ; AC=4k
Vì tg ABC vuông tại A
Áp dụng định lý Py-ta-go vào tg vuông ABC ta có:
=> AB^2 + AC^2 = BC^2
=> (3k)^2 + (4k)^2 = 15^2
=> 9k^2 + 16k^2 = 225
=> 25k^2 = 225
=> k^2=9 => k=3
=> AB=3k=3.3=9 cm
AC=4k=4.3=12 cm
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Cho hình tam giác vuông ABC vuông tại góc A , có chu vi là 72 cm . Cạnh AB bằng \(\frac{3}{4}\)cạnh AC , cạnh AC bằng \(\frac{4}{5}\)cạnh BC . Tính diện tích hình tam giác vuông đó
Cho tam giác ABC vuông tại A có AB=6cm. AC=7cm. đường trung tuyến AD(D thuộc BC)
a, tính AD
b, kẻ DH vuông góc AB(H thuộc AB), DK vuông góc AC (K thuộc AC). Chứng minh AHDK là hcn
c, Khi tứ giác AHDK là hình vuông thì cm \(\frac{1}{AC}+\frac{1}{AB}=\frac{1}{DH}\)
Cho tam giác ABC , vuông tại A , AB=AC=6cm . M thuộc AB , N thuộc AC sao cho AM = AN . Đường thẳng đi qua M vuông góc với BN cắt AC tại D . Tính CD
0,(3) + 0,1(3) - 4\(\frac{1}{3}\)
0,(3)+0,1(3)-\(4\frac{1}{3}\)= \(\frac{1}{3}+\frac{2}{15}-\frac{13}{3}=\frac{-58}{15}\)
Cho tam giác ABC vuông tại A, đường cao AH, biết \(\frac{AB}{AC}=\frac{3}{4}\)và BC = 15. Tính AB, AC