Cho HCN ABCD có AB=2AD. Trên cạnh BC lâý điểm M. AM cắt DC tại E. CM: 1/AB^2= 1/AM^2 + 1/4AE^2
Cho hcn ABCD (AB=2BC) ,trên cạnh BC lấy điểm E , sao cho AE cắt D tại E . C/m\(\frac{1}{AB^2}=\frac{1}{AE^2}-\frac{1}{4AE^2}\)
Cho hình vuông ABCD biết 2 AB = 3 CD Trên cạnh BC lấy điểm E .tia AE cắt DC tại F
CM: \(\frac{1}{4AE^2}+\frac{1}{9AF^2}\) không phụ thuộc vào vị trí của E trên BC
cho hcn ABCD có AB=2AD, 1 đường thg qua A cắt cạnh BC tại M, cắt đg thg CD tại N. c/m:
4/AB2=4/AM2+4/AN2
cho hcn ABCD ;AB=2AD. trên cạnh AD lấy M ,trên cạnh BC lấy P sao cho AM=CP .kẻ BH vuông góc vs AC tại H .gọi Q là trung điểm của CH ,đường thẳng kẻ qua P song song vs MQ cắt AC tại N
a) chứng minh tứ giác MNPQ là hình bình hành
b) khi M là trung điểm AD .chứng minh BQ vuông góc vs NP
c) đường thẳng AP cắt DC tại điểm F . chứng minh rằng \(\frac{1}{AB^2}=\frac{1}{AP^2}+\frac{1}{4AF^2}\)
cho hcn abcd ad=3ab.Trên cạnh bc lấy điểm m tùy í am cắt cd tại b .cmr 1/am^2 +9/ad^2 =1/ab^2
Cho hình vuông ABCD và điểm M thuộc cạnh BC. AM cắt DC tại N.
Chứng minh rằng: \(\dfrac{1}{AB^2}\)= \(\dfrac{1}{AM^2}\)+\(\dfrac{1}{AN^2}\)
Qua A kẻ đường thẳng vuông góc với AM cắt tia BC tại E.
Tam giác AEM vuông tại A có \(AB\perp EM\)
Ta có: \(S_{AEM}=\dfrac{1}{2}AE.AM=\dfrac{1}{2}AB.ME\)
\(\Rightarrow AE.AM=AB.ME\\ \Rightarrow\dfrac{1}{AB}=\dfrac{ME}{AE.AM}\\ \Rightarrow\dfrac{1}{AB^2}=\dfrac{ME^2}{AE^2.AM^2}\left(1\right)\)
Áp dụng đl pytago vào tam giác vuông AEM:
\(AE^2+AM^2=ME^2\)
Thay vào (1) ta có:
\(\dfrac{1}{AB^2}=\dfrac{ME^2}{AE^2.AM^2}=\dfrac{AE^2+AM^2}{AE^2.AM^2}=\dfrac{1}{AE^2}+\dfrac{1}{AM^2}\)
Mà AE = AN nên: \(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)
cho hình vuông ABCD . trên cạnh BC lấy điểm M, trên cạnh CD lấy điểm N. tia AM cắt CD tại K. Kẻ AI vuông góc với AK cắt CD tại I
Cm : 1/AM^2+1/AK^2=1/AB^2
biết số đo góc MAN=45*,CM+CN=7cm,CM-CN=1. tính số đo góc AMN?
cho hình thoi abcd có a = 120 độ .gọi m là 1 điểm nằm trên cạnh ab ,dm cắt bc tại n ,cm cắt an tại e .cmr :
a) ac^2=am*cn
b) ame đồng dạng cmb
Cho hình vuông ABCD. M là 1 điểm nằm trên cạnh BC, tia AM cắt CM tại N, chứng minh 1/AM2 + 1/AN2 = 1/AB2
Thế nếu là hcn thì làm ntn bạn