tinh gá rị của biểu thức
\(\frac{5}{3}:\left(\frac{7}{28}+\frac{7}{26}\right)\)
1) tính giá trị biểu thức:
a)-1\(\frac{5}{7}.15+\frac{2}{7}\left(-15\right)+\left(-105\right)\left(\frac{2}{3}-\frac{4}{5}+\frac{1}{7}\right)\)
b)\(\frac{3}{14}:\frac{1}{28}-\frac{13}{21}:\frac{1}{28}+\frac{49}{42}:\frac{1}{28}-6\)
c)\(4.\left(-\frac{1}{2}\right)^3-2.\left(-\frac{1}{2}\right)^2+3.\left(-\frac{1}{2}\right)+1\)
Rút gọn các biểu thức sau:
\(\frac{-5}{12}.\frac{2}{7}+\frac{7}{12}.\frac{-3}{14}\)
b) \(\frac{2.\left(-13\right).9.10}{\left(-3\right).4.\left(-5\right).26}\)
Thông cảm không có máy tính:
1) tính giá trị biểu thức:
a)-1\(\frac{5}{7}.15+\frac{2}{7}\left(-15\right)+\left(-105\right)\left(\frac{2}{3}-\frac{4}{5}+\frac{1}{7}\right)\)
b)\(\frac{3}{14}:\frac{1}{28}-\frac{13}{21}:\frac{1}{28}+\frac{29}{42}:\frac{1}{28}-6\)
c)4.\(\left(-\frac{1}{2}\right)^3-2.\left(-\frac{1}{2}^2\right)+3.\left(-\frac{1}{2}\right)+1\)
Tính giá trị biểu thức:
A = \(\frac{15}{34}+\frac{7}{21}+\frac{9}{34}-1\frac{15}{17}+\frac{2}{3}\) B = \(16\frac{2}{7}:\left(-\frac{3}{5}\right)-28\frac{2}{7}:\left(-\frac{3}{5}\right)\)
C = 25.\(\left(-\frac{1}{3}\right)^3+\frac{1}{5}-2.\left(-\frac{1}{2}\right)^2-\frac{1}{2}\)
a: \(A=\left(\dfrac{15}{34}+\dfrac{9}{34}-1-\dfrac{15}{17}\right)+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)
\(=\left(\dfrac{12}{17}-1-\dfrac{15}{17}\right)+1\)
\(=\dfrac{-20}{17}+1=\dfrac{-3}{17}\)
b: \(B=\dfrac{-5}{3}\cdot16\dfrac{2}{7}-\dfrac{-5}{3}\cdot28\dfrac{2}{7}\)
\(=\dfrac{-5}{3}\left(16+\dfrac{2}{7}-28-\dfrac{2}{7}\right)=\dfrac{-5}{3}\cdot\left(-12\right)=20\)
c: \(C=25\cdot\dfrac{-1}{27}+\dfrac{1}{5}-2\cdot\dfrac{1}{4}-\dfrac{1}{2}\)
\(=\dfrac{-25}{27}+\dfrac{1}{5}-1\)
\(=\dfrac{-125+27-135}{135}=\dfrac{-233}{135}\)
Tính giá trị biểu thức:
\(A=\frac{15}{34}+\frac{7}{21}+\frac{9}{34}-1\frac{15}{17}+\frac{2}{3}\) \(B=16\frac{2}{7}:\left(\frac{-3}{5}\right)-28\frac{2}{7}:\left(\frac{-3}{5}\right)\)
\(C=25.\left(\frac{-1}{3}\right)^3+\frac{1}{5}-2.\left(\frac{-1}{2}\right)^2-\frac{1}{2}\)
tính hợp lí các biểu thức sau
\(\left(\frac{1}{9}\right)^{2005}.9^{2005}-96^2:24^2\)
\(16\frac{2}{7}:\left(\frac{-3}{5}\right)-28\frac{2}{7}:\left(\frac{-3}{5}\right)\)
\(\left(-2\right)^3.\left(\frac{3}{4}-0.25\right):\left(2\frac{1}{4}-1\frac{1}{6}\right)\)
\(\left(\frac{1}{9}\right)^{2015}.9^{2015}-96^2:24^2=1^{2015}-4^2=1-16=-15\)
\(16\frac{2}{7}:\left(\frac{-3}{5}\right)-28\frac{2}{7}:\left(\frac{-3}{5}\right)=\left(16\frac{2}{7}-28\frac{2}{7}\right):\left(\frac{-3}{5}\right)=-12.\frac{-5}{3}=20\)
\(\left(-2\right)^3.\left(\frac{3}{4}-0,25\right):\left(2\frac{1}{4}-1\frac{1}{6}\right)=-8.\frac{1}{2}:\frac{13}{12}=-8.\frac{1}{2}.\frac{12}{13}=\frac{-48}{13}\)
Cho biểu thức: \(A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right).\)
Hãy tính giá trị của A theo hai cách:
a) Tính giá trị của từng biểu thức trong dấu ngoặc trước.
b) Bỏ dấu ngoặc rồi nhóm các số hạng thích hợp.
a)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right).\\A = \left( {\frac{{30}}{{15}} + \frac{5}{{15}} - \frac{6}{{15}}} \right) - \left( {\frac{{105}}{{15}} - \frac{9}{{15}} - \frac{{20}}{{15}}} \right) - \left( {\frac{3}{{15}} + \frac{{25}}{{15}} - \frac{{60}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} - \left( {\frac{{ - 32}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} + \frac{{32}}{{15}}\\A = \frac{{ - 15}}{{15}}\\A = - 1\end{array}\)
b)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right)\\A = 2 + \frac{1}{3} - \frac{2}{5} - 7 + \frac{3}{5} + \frac{4}{3} - \frac{1}{5} - \frac{5}{3} + 4\\A = \left( {2 - 7 + 4} \right) + \left( {\frac{1}{3} + \frac{4}{3} - \frac{5}{3}} \right) + \left( { - \frac{2}{5} + \frac{3}{5} - \frac{1}{5}} \right)\\A = - 1 + 0 + 0 = - 1\end{array}\)
Tìm giá trị nhỏ nhất của biểu thức \(28\cdot\left(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|\right)\)
Tìm giá trị nhỏ nhất của biểu thức: \(28\cdot\left(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|\right)\)
Mình cũng thắc mắc câu này ;-;
Ta có:
\(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|=\left|\frac{3}{4}-x\right|+\left|x+\frac{9}{7}\right|\ge\left|\frac{3}{4}-x+x+\frac{9}{7}\right|=\frac{57}{28}\)
=> \(28\cdot\left(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|\right)\ge57\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(\frac{3}{4}-x\right)\left(x+\frac{9}{7}\right)\ge0\Rightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)
Vậy \(Min=28\Leftrightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)
Đặt \(A=\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|\)
\(\Rightarrow A=\left|\frac{3}{4}-x\right|+\left|x+\frac{9}{7}\right|\ge\left|\frac{3}{4}-x+x+\frac{9}{7}\right|=\left|\frac{57}{28}\right|=\frac{57}{28}\)
Dấu " = " xảy ra \(\Leftrightarrow\left(\frac{3}{4}-x\right)\left(x+\frac{9}{7}\right)\ge0\)
TH1: \(\hept{\begin{cases}\frac{3}{4}-x\le0\\x+\frac{9}{7}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{3}{4}\le x\\x\le\frac{-9}{7}\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{4}\\x\le\frac{-9}{7}\end{cases}}\)( vô lý )
TH2: \(\hept{\begin{cases}\frac{3}{4}-x\ge0\\x+\frac{9}{7}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{3}{4}\ge x\\x\ge\frac{-9}{7}\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{4}\\x\ge\frac{-9}{7}\end{cases}}\Leftrightarrow\frac{-9}{7}\le x\le\frac{3}{4}\)
\(\Rightarrow28.\left(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|\right)\ge28.\frac{57}{28}=57\)
Dấu " = " xảy ra \(\Leftrightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)
Vậy GTNN của biểu thức đã cho là \(57\)\(\Leftrightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)