Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lil Học Giỏi
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2021 lúc 21:17

Ta có: \(VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}\)

\(=\sqrt{3x^2+6x+3+4}+\sqrt{5x^2+10x+5+16}\)

\(=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge2+4=6\)

Ta có: \(VP=5-x^2-2x\)

\(=-\left(x^2+2x+1\right)+6\)

\(=-\left(x+1\right)^2+6\le6\)

VP=VT khi x+1=0

hay x=-1

Vậy: x=-1

Lăng Thiên Tuyết
Xem chi tiết
Nguyễn Văn Tiến
19 tháng 12 2015 lúc 10:59

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge2+4=6\)\(5-2x-x^2=-\left(x+1\right)^2+6\le6\)

VT=VP=6<=>x=-1

Nguyễn Linh Chi
Xem chi tiết
Mr Lazy
2 tháng 8 2015 lúc 17:04

\(pt\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}+\left(x+1\right)^2=6\)

Mà \(\sqrt{3\left(x+1\right)^2+4}\ge\sqrt{4}=2\)

\(\sqrt{5\left(x+1\right)^2+16}\ge\sqrt{16}=4\)

\(\left(x+1\right)^2\ge0\)

\(\Rightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}+\left(x+1\right)^2\ge6\) với mọi x thuộc R.

Dấu "=" xảy ra khi và chỉ khi \(\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Kết luận: \(x=-1.\)

Kiệt Nguyễn Tuấn
2 tháng 8 2015 lúc 16:30

x=-3 đúng thì **** giùm nha bạn

Xem chi tiết
Nguyễn Linh Chi
7 tháng 1 2020 lúc 23:45

ĐK:....

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

<=> \(\left(\sqrt{3x^2+6x+7}-2\right)+\left(\sqrt{5x^2+10x+21}-4\right)=-1-2x-x^2\)

<=> \(\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)

<=> \(\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1\right)=0\)

<=> x + 1 = 0 

<=> x = -1. ( đối chiếu điều kiện )

Kết luận.

Khách vãng lai đã xóa
LT丶Hằng㊰
26 tháng 11 2020 lúc 20:30

Giải theo cách ngắn gọn nhất nhẹ cậu vì cô Chi đã làm bên dưới rồi

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

Vì vế trái của phương trình không nhỏ hơn 6 , còn vế phải không lớn hơn 6 . Vậy đẳng thức chỉ xảy ra khi cả 2 vế đều bằng 6

=> x = -1

Khách vãng lai đã xóa
phan tuấn anh
Xem chi tiết
Minh Triều
1 tháng 2 2016 lúc 21:51

3x2+6x+7=3.(x2+2x+1)+4=3.(x+1)2+4 >= 4 

=> căn của nó >=

..................................................... ko thích giải

Minh Triều
1 tháng 2 2016 lúc 21:37

dùng BĐT nha bạn

TRAN NGOC MAI ANH
1 tháng 2 2016 lúc 21:37

ghê quá, muốn ói , mk chưa học đâu

Nguyễn Hoàng Liên
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 6 2016 lúc 15:16

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=-x^2-2x+5\left(ĐKXĐ:-1-\sqrt{6}\le x\le-1+\sqrt{6}\right)\)

Ta có : \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge2+4=6\)

Mặt khác : \(-x^2-2x+5=-\left(x+1\right)^2+6\le6\)

Do đó, phương trình tương đương với : \(\hept{\begin{cases}\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=6\\-x^2-2x+5=6\end{cases}\Rightarrow x=-1}\)(TMDK)

Vậy nghiệm của phương trình là x = -1

tnhy
Xem chi tiết
Hoa lưu ly
25 tháng 10 2015 lúc 23:18

5x2+10x+21=5(x+1)2+16>=42

3x2+6x+7=3(x+1)2+4>=22

Do đó VT>=6(1)

VP=5-2x-x2=6-(x+1)2=<6(2)

Từ (1)(2)=> VT=VP=6

Giải VP=6 <=>5-2x-x2=6

                <=>x=-1

 

nguyenquockhang
Xem chi tiết
Hô Ai Quynh Như
Xem chi tiết