A=1-2+3-4+...+79-80
tính A = 1/2 . 3/4 . ... . 79/80
(1/2 +1/3 + 1/4 +....+1/80) x> 1/79 + 2/78 + 3/77 +...+ 78/2 + 79/1)
=>(1/2+1/3+...+1/80)*x>(1+1/79+1+2/78+...+1+78/2+1)
=>\(x\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{80}\right)>\dfrac{80}{80}+\dfrac{80}{79}+...+\dfrac{80}{3}+\dfrac{80}{2}\)
=>x>80
cho a =1/2*3/4*5/6*...*79/80. chứng minh a <1/9
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\)
\(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\)
\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{79}{80}.\frac{80}{81}\)
\(A^2< \frac{1}{81}=\left(\frac{1}{9}\right)^2\)
=> \(A< \frac{1}{9}\left(đpcm\right)\)
Ta có:
\(\frac{1}{2}\)= 1- \(\frac{1}{2}\) < 1- \(\frac{1}{3}\)=\(\frac{2}{3}\)
\(\frac{3}{4}\)= 1- \(\frac{1}{4}\) < 1- \(\frac{1}{5}\) = \(\frac{4}{5}\)
...
\(\frac{79}{80}\) = 1- \(\frac{1}{80}\) < 1- \(\frac{1}{81}\)= \(\frac{80}{81}\)
Từ trên, ta có:
A= \(\frac{1}{2}\). \(\frac{3}{4}\). \(\frac{5}{6}\)...\(\frac{79}{80}\)< \(\frac{2}{3}\). \(\frac{4}{5}\). \(\frac{6}{7}\)...\(\frac{80}{81}\)
A2 < \(\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\right)\). \(\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\right)\)
A2 < \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{79}{80}.\frac{80}{81}\)
A2 <\(\frac{1.\left(2.3.4...79.80\right)}{\left(2.3.4...79.80\right).81}\)
A2 < \(\frac{1}{81}\) =\(\left(\frac{1}{9}\right)^2\)
A < \(\frac{1}{9}\) (đpcm)
Vậy A< \(\frac{1}{9}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\)
\(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\)
\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}....\frac{79}{80}.\frac{80}{81}\)
\(A^2< \frac{1}{81}=\left(\frac{1}{9}\right)^2\)
\(\Rightarrow A< \frac{1}{9}\left(\text{đ}pcm\right)\)
Cho A=1/2×3/4×5/6.....×79/80. Chứng minh A>1/13
a)D=1+2-3-4+5+6-7-8+...-79-80-81
Cho A = 1/2 . 3/4 . 5/6 . 7/8 ... 79/80
Chung minh A < 1/9
Tính nhanh :1+2+3+4......+79+80
=80 x 40,5
=3240
Tính nhanh :1+2+3+4......+79+80
Số số hạng của dãy là:
(80-1):1+1=80 (số hạng)
Tổng của dãy trên là:
(80+1).80:2=3240
Số Số Hạng dãy là
(80-1):1+1=80(số)
Tổng dãy số là
(80+1)x80:2=3240
Vậy tổng dãy số là 3240
x1+x2+x3+...............+x80+x81=0
x1+x2=x3+x4=............=x77+x78=x78+x79=x79+x80=x80+x81+x1=1
Tính: a81,a80,a79,a78,a1,a2
Cho a1,a2,....,a80,a81 là số nguyên
Biết a1+a2=a3+a4=a5+a6=.....=a77+a78=a78+a79=a79+a80=a80+a81+a1=1
Tính a81,a80,a79,a78,a1,a2