Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Trang Nhung
Xem chi tiết
Thiên An
2 tháng 5 2017 lúc 19:51

Gọi cạnh huyền là a, cạnh đối diện góc 300 là c, cạnh còn lại là b

Tính được \(b=c.\cot30=c\sqrt{3}\)  nên \(a=\sqrt{b^2+c^2}=\sqrt{\left(c\sqrt{3}\right)^2+c^2}=2c\)

Bán kính đường tròn ngoại tiếp là R = a/2 = 2c/2 = c

Bán kính đường tròn nội tiếp là 

\(r=\frac{S}{p}=\frac{bc}{2p}=\frac{bc}{a+b+c}=\frac{c^2\sqrt{3}}{2c+c\sqrt{3}+c}=\frac{c^2\sqrt{3}}{\left(3+\sqrt{3}\right)c}=\frac{\left(\sqrt{3}-1\right)c}{2}\)

Do đó    \(\frac{R}{r}=c.\frac{2}{\left(\sqrt{3}-1\right)c}=1+\sqrt{3}\) 

bạn thi vio à kết bạn vs mk nhé

Hà Lê
Xem chi tiết
Phạm Văn Giang
5 tháng 3 2017 lúc 10:36

căn 3 +1 nha

Hà Lê
5 tháng 3 2017 lúc 23:32

Làm sao thế bạn? Chỉ giùm mình với TT_TT

hoàng thị hoa
Xem chi tiết
Nguyễn Hoàng Bảo Nhi
30 tháng 4 2020 lúc 16:15

A E F H O D B H' A' C

a . Gọi AH ∩ BC=D,BH ∩ AC=E,CH ∩ AB=F

\(\Rightarrow AD\perp BC,BE\perp AC,CF\perp AB\)

\(\Rightarrow\widehat{ADC}=\widehat{AFC}=90^0\) => ◊AFDC nội tiếp 

\(\Rightarrow\widehat{DCF}=\widehat{DAF}\)

VÌ H đối xứng H' qua BC 

\(\Rightarrow HH'\perp BC\Rightarrow A,H,,D,H'\)thẳng hàng 

\(\Rightarrow\widehat{BAH'}=\widehat{DAF}=\widehat{FDC}=\widehat{HCB}\)

Lại có: H đối xứng với H' qua BC

\(\Rightarrow\widehat{BCH'}=\widehat{HCB}\)

\(\Rightarrow\widehat{BCH'}=\widehat{BAH'}\Rightarrow\)


 

\(\Rightarrow BC\perp AA'\Rightarrow A,H,D,H',A'\) thẳng hàng 

Vì \(H,H'\) đối xứng qua BC , A,A' đối xứng qua BC 

\(\Rightarrow\widehat{BHC}=\widehat{BH'C},\widehat{BAC}=\widehat{BA'C}\)

Lại có ◊ ABH'C nội tiếp 

\(\Rightarrow\widehat{BAC}+\widehat{BH'C}=180^0\)

\(\Rightarrow\widehat{BA'C}+\widehat{BHC}=180^0\)

=> ◊ BHCA' nội tiếp 

=> Bán kính đường tròn ngoại tiếp \(\Delta BHC\) bằng bán kính đường tròn ngoại tiếp  \(\Delta A'BC\)

Ta có : A , A' đối cứng qua BC

 \(\Rightarrow A'B=AB,CA=CA'\Rightarrow\Delta ABC=\Delta A'BC\left(c.c.c\right)\)

=> Bán kính đường tròn ngoại tiếp \(\Delta A'BC\) bằng bán kính đường tròn ngoại tiếp  ΔABC

=> Bán kính đường tròn ngoại tiếp \(\Delta BHC\) bằng bán kính đường tròn ngoại tiếp ΔABC

Khách vãng lai đã xóa
Tòng Thị Như Quỳnh
Xem chi tiết
nhi
Xem chi tiết
kagamine rin len
Xem chi tiết
nanako
Xem chi tiết
Hạnh Minh
Xem chi tiết
Khanh Vy
Xem chi tiết