Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nhok họ lưu
Xem chi tiết
Triệu Khánh Phương
Xem chi tiết
Ngọc Bích Huệ
12 tháng 10 2021 lúc 19:50

bai  nay to biet la so 88

Khách vãng lai đã xóa
Đào Ngọc Quỳnh Anh
Xem chi tiết
Trần Anh
5 tháng 1 2016 lúc 14:27

= 1

tick đi mink giải thích cho .  hihihihihihihihiihihiiiiiiiiiiiiiiii

A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)  + \(\dfrac{1}{4}-\dfrac{1}{5}\)\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)

A = 1

Nguyễn  Mai Linh
Xem chi tiết
TAKASA
11 tháng 7 2018 lúc 18:19

Đặt A =1/2^2 .1/3^2.1/4^2. ... . 1/99^2

2A=1/2.1/2^2.1/2^3. ... . 1/98^2

2A-A= (1/2.1/2^2.1/2^3. ... . 1^98^2)-(1/2^2.1/3^2.1/4^2. ... . 1/99^2)

A=1/2-1/99^2

triệu khánh phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 3 2021 lúc 21:37

Ta có: \(\dfrac{101+100+99+...+3+2+1}{101-100+99-98+...+3-2+1}\)

\(=\dfrac{101+\left(100+1\right)\cdot50}{101-\left[100-99+98-97+...+2-1\right]}\)

\(=\dfrac{101\cdot51}{101-1\cdot50}\)

\(=\dfrac{101\cdot51}{101-50}=101\)

triệu khánh phương
28 tháng 3 2021 lúc 21:41

c.mơn bn nhá. ~THANK YOU~

Ngọc Ánh Hồng
Xem chi tiết
Đặng Hồng Nhung
Xem chi tiết
Phạm Duy Quý
4 tháng 5 2017 lúc 21:24

ta có 

A = (1/2+1)(1/3+1)..........(1/99+1)=3/2.4/3.5/4......100/99 ( dùng tính chất rút gọn phân số ta sẽ rút gọn tử sủa phân số trước với mẫu phân sô sau ta đc bỉu thức ) 

=100/2 = 50 chúc bn hc tốt ^_^

Nguyễn Thái Bảo
Xem chi tiết
Nguyễn Ngọc Anh Minh
22 tháng 7 2023 lúc 15:02

1/

\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)

\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)

Đặt 

\(A=1.2+2.3+3.4+...+99.100\)

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)

\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)

Đặt

\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)

\(\Rightarrow N=A-B\)

2/

Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được

\(A=1^2+2^2+3^2+...+100^2\) 

Tính như câu 1

3/ Làm như bài 4

4/

\(S=1^2+3^2+5^2+...+99^2=\)

\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)

\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)

Đặt

\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\) 

Đặt

\(A=1.3+3.5+5.7+...+99.101\)

\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)

\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)

\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)

\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)

\(\Rightarrow S=A-2B\)

Gia Hân
22 tháng 7 2023 lúc 15:04

Bài 1:

\(N=1^2+2^2+3^3+...+99^2\)

\(N=1.1+2.2+3.3+...+99.99\)

\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)

\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)

+) Tính \(A=1.2+2.3+3.4+...+99.100\)

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3A=99.100.101\)

\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)

+) Tính \(B=1+2+3+...+99\)

\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)

\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)

\(\Rightarrow N=A-B=333300-4950=328350\)

\(\Rightarrow N=328350\)

 

 

Nguyễn Thái Bảo
22 tháng 7 2023 lúc 15:35

xin loi mik danh nham nhe bai do la 10000 nhe

 

 

★彡℘é✿ทợท彡★
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 21:36

Bài 1: 

a: Tổng là:

(-19+19)+(-18+18)+...+20=20

b: Tổng là:

-18+(-17+17)+...+0=-18