\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
Bài này mình làm bài KT ở lớp rồi bạn ạ,ko thể tính được mà so sánh với -1/2
\(A=-\left(\frac{3\cdot8\cdot15}{4\cdot9\cdot16}....\frac{9999}{10000}\right)\)Vì A có 99 số hạng (số lẻ)
\(A=-\left(\frac{1\cdot3\cdot2\cdot4\cdot3\cdot5}{2\cdot2\cdot3\cdot3\cdot4\cdot4}...\frac{99\cdot101}{100\cdot100}\right)\)
\(A=-\left(\frac{1}{2}\cdot\left(\frac{3\cdot2\cdot4\cdot3}{2\cdot3\cdot3\cdot4}...\frac{99}{100}\right)\cdot\frac{101}{100}\right)\)
\(A=-\left(\frac{1}{2}\cdot\frac{101}{100}\right)< \left(-\frac{1}{2}\cdot\frac{100}{100}\right)\Leftrightarrow-\frac{101}{200}< \frac{-100}{200}=-\frac{1}{2}\)
\(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{99^2}-1\right)\)
\(=-\frac{3}{2^2}.\frac{-8}{3^2}...\frac{-9999}{100^2}\)
\(=\frac{-\left(3.8...9999\right)}{\left(2.3.4...100\right)^2}=\frac{-\left(1.3.2.4....99.101\right)}{\left(2.3.4...100\right)^2}\)
\(=\frac{-\left[\left(1.2.3..99\right).\left(3.4.5...101\right)\right]}{\left(2.3..4...100\right).\left(2.3.4...100\right)}=\frac{-101}{100.2}=\frac{-101}{200}\)
\(\frac{1}{99^2}-1\ne\frac{-9999}{10000}\) xin hai làm lại