Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Khánh Linh
Xem chi tiết
Kaori Miyazono
31 tháng 7 2018 lúc 21:01

Mình sửa lại để nha \(\left(125^7-625^5-25^9\right)\div99\)

Ta có \(\frac{\left(5^3\right)^7-\left(5^4\right)^6-\left(5^2\right)^9}{99}\)

\(=\frac{5^{21}-5^{20}-5^{18}}{99}\)

\(=\frac{5^{18}.\left(5^3-5^2-1\right)}{99}\)

\(=\frac{5^{18}.99}{99}\)

\(=5^{18}\)

Đoàn Thị Ánh Hậu
Xem chi tiết
Lê Nguyễn Bảo Trân
Xem chi tiết

Ta có: \(B=\frac{\frac19-\frac17-\frac{1}{11}}{\frac49-\frac47-\frac{4}{11}}+\frac{0,6-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac45-0,16-\frac{4}{125}-\frac{4}{625}}\)

\(=\frac{\frac19-\frac17-\frac{1}{11}}{4\left(\frac19-\frac17-\frac{1}{11}\right)}+\frac{\frac35-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac45-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)

\(=\frac14+\frac{3\left(\frac15-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}{4\left(\frac15-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}\)

\(=\frac14+\frac34=\frac44=1\)

Khang AN
Xem chi tiết

a cần chứng minh rằng \(M = 125^{7} - 625^{2} - 25^{9}\) chia hết cho 99.

Bước 1: Tách 99 thành thừa số nguyên tố

Ta có \(99 = 3 \times 33\), và 33 lại có thể phân tích thành \(33 = 3 \times 11\). Vậy \(99 = 3^{2} \times 11\). Để chứng minh \(M\) chia hết cho 99, ta sẽ chứng minh \(M\) chia hết cho cả 9 và 11.

Bước 2: Chứng minh \(M\) chia hết cho 9

Ta xét \(M m o d \textrm{ } \textrm{ } 9\):

\(125 \equiv 8 m o d \textrm{ } \textrm{ } 9\)\(625 \equiv 4 m o d \textrm{ } \textrm{ } 9\)\(25 \equiv 7 m o d \textrm{ } \textrm{ } 9\)

Vậy ta cần tính:

\(M m o d \textrm{ } \textrm{ } 9 = \left(\right. 125^{7} - 625^{2} - 25^{9} \left.\right) m o d \textrm{ } \textrm{ } 9 = \left(\right. 8^{7} - 4^{2} - 7^{9} \left.\right) m o d \textrm{ } \textrm{ } 9\)

\(8^{7} m o d \textrm{ } \textrm{ } 9\): Vì \(8 \equiv - 1 m o d \textrm{ } \textrm{ } 9\), ta có \(8^{7} \equiv \left(\right. - 1 \left.\right)^{7} \equiv - 1 m o d \textrm{ } \textrm{ } 9\).\(4^{2} m o d \textrm{ } \textrm{ } 9 = 16 m o d \textrm{ } \textrm{ } 9 = 7 m o d \textrm{ } \textrm{ } 9\).\(7^{9} m o d \textrm{ } \textrm{ } 9\): Vì \(7^{3} \equiv 1 m o d \textrm{ } \textrm{ } 9\), ta có \(7^{9} \equiv 1^{3} = 1 m o d \textrm{ } \textrm{ } 9\).

Vậy:

\(M m o d \textrm{ } \textrm{ } 9 = \left(\right. - 1 - 7 - 1 \left.\right) m o d \textrm{ } \textrm{ } 9 = - 9 m o d \textrm{ } \textrm{ } 9 = 0\)

Do đó, \(M\) chia hết cho 9.

Bước 3: Chứng minh \(M\) chia hết cho 11

Ta xét \(M m o d \textrm{ } \textrm{ } 11\):

\(125 \equiv 4 m o d \textrm{ } \textrm{ } 11\)\(625 \equiv 9 m o d \textrm{ } \textrm{ } 11\)\(25 \equiv 3 m o d \textrm{ } \textrm{ } 11\)

Vậy ta cần tính:

\(M m o d \textrm{ } \textrm{ } 11 = \left(\right. 125^{7} - 625^{2} - 25^{9} \left.\right) m o d \textrm{ } \textrm{ } 11 = \left(\right. 4^{7} - 9^{2} - 3^{9} \left.\right) m o d \textrm{ } \textrm{ } 11\)

\(4^{7} m o d \textrm{ } \textrm{ } 11\): Ta tính các lũy thừa của 4 mod 11:
\(4^{1} \equiv 4 m o d \textrm{ } \textrm{ } 11 , 4^{2} \equiv 16 \equiv 5 m o d \textrm{ } \textrm{ } 11 , 4^{3} \equiv 20 \equiv 9 m o d \textrm{ } \textrm{ } 11 , 4^{4} \equiv 36 \equiv 3 m o d \textrm{ } \textrm{ } 11 , 4^{5} \equiv 12 \equiv 1 m o d \textrm{ } \textrm{ } 11.\)
Vậy \(4^{7} = 4^{5} \times 4^{2} \equiv 1 \times 5 = 5 m o d \textrm{ } \textrm{ } 11\).\(9^{2} m o d \textrm{ } \textrm{ } 11 = 81 m o d \textrm{ } \textrm{ } 11 = 4 m o d \textrm{ } \textrm{ } 11\).\(3^{9} m o d \textrm{ } \textrm{ } 11\): Ta tính các lũy thừa của 3 mod 11:
\(3^{1} \equiv 3 m o d \textrm{ } \textrm{ } 11 , 3^{2} \equiv 9 m o d \textrm{ } \textrm{ } 11 , 3^{3} \equiv 27 \equiv 5 m o d \textrm{ } \textrm{ } 11 , 3^{4} \equiv 15 \equiv 4 m o d \textrm{ } \textrm{ } 11 , 3^{5} \equiv 12 \equiv 1 m o d \textrm{ } \textrm{ } 11.\)
Vậy \(3^{9} = 3^{5} \times 3^{4} \equiv 1 \times 4 = 4 m o d \textrm{ } \textrm{ } 11\).

Vậy:

\(M m o d \textrm{ } \textrm{ } 11 = \left(\right. 5 - 4 - 4 \left.\right) m o d \textrm{ } \textrm{ } 11 = - 3 m o d \textrm{ } \textrm{ } 11 = 8\)

Do đó, \(M ≢ 0 m o d \textrm{ } \textrm{ } 11\), tức là \(M\) không chia hết cho 11.

Kết luận:

Dựa trên phép tính trên, ta thấy rằng \(M\) chia hết cho 9 nhưng không chia hết cho 11, vì vậy \(M\) không chia hết cho 99.

Tham khảo

Xin k nha

gấu đáng yêu **
Xem chi tiết
An Trịnh Hữu
30 tháng 6 2017 lúc 22:40

\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)

\(=\dfrac{1}{4}+\dfrac{3}{4}=\dfrac{4}{4}=1\)

Đinh Ngọc Ánh
Xem chi tiết
Thanh Tùng DZ
9 tháng 10 2017 lúc 21:14

M = 1257 - 6255 - 259

M = ( 53 )7 - ( 54 )5 - ( 52 )9

M = 521 - 520 - 518

M = 518 . ( 53 - 52 - 1 )

M = 518 . 99

M = 518 . 9 . 11 \(⋮\)9

SGK_LQM
Xem chi tiết
Đỗ Diệu Linh
Xem chi tiết
Nguyễn Thanh Hằng
13 tháng 9 2017 lúc 12:31

\(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)

\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3}{4}\)

\(=\dfrac{1}{4}+\dfrac{3}{4}\)

\(=1\)

Nguyễn Thị Hồng Nhung
13 tháng 9 2017 lúc 12:38

\(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)

\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}=\dfrac{1}{4}+\dfrac{3}{4}=1\)

Phạm Hoàng Ngọc Thanh
Xem chi tiết
Kurosaki Akatsu
24 tháng 6 2017 lúc 10:08

\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)

\(=\frac{1\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}{4.\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3.\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}{4.\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}\)

\(=\frac{1}{4}+\frac{3}{4}=1\)

Trịnh Thành Công
24 tháng 6 2017 lúc 10:09

\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)

\(=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}\)

\(=\frac{1}{4}+\frac{3}{4}\)

=1

Đào Trọng Luân
24 tháng 6 2017 lúc 10:10

Ta có:

\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left[\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right]}=\frac{1}{4}\)

Lại có:

\(\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}=\frac{3\left[\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right]}{4\left[\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right]}=\frac{3}{4}\)

Vậy: 

\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}=\frac{1}{4}+\frac{3}{4}=1\)