Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Frisk
Xem chi tiết
Frisk
Xem chi tiết
Frisk
Xem chi tiết
Marry Trần
Xem chi tiết
Nguyễn Trần Phúc Nguyên
Xem chi tiết
Nguyệt Xàm
31 tháng 7 2018 lúc 8:54

Hình tự vẽ nha : 

a) 

Ta có : HI \(\perp\)AB => AI \(\perp\)IH 

<=> AI là đường cao của tam giác AEH 

Mà : EI = IH ( gt ) 

=> tam giác AEH cân tại A 

=> AE = AH 

b) chứng minh tương tự như câu (a) 

Nguyên Ngan
Xem chi tiết
Lynn Yj
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 23:17

a) Xét ΔAIH vuông tại I và ΔAID vuông tại I có

AI chung

IH=ID(gt)

Do đó: ΔAIH=ΔAID(hai cạnh góc vuông)

Suy ra: \(\widehat{IAH}=\widehat{IAD}\)(hai góc tương ứng)

Xét ΔAHK vuông tại K và ΔAEK vuông tại K có 

AK chung

HK=EK(gt)

Do đó: ΔAHK=ΔAEK(hai cạnh góc vuông)

Suy ra: \(\widehat{HAK}=\widehat{EAK}\)(hai góc tương ứng)

Ta có: \(\widehat{DAE}=\widehat{DAI}+\widehat{IAH}+\widehat{HAK}+\widehat{EAK}\)

\(=2\cdot\widehat{BAH}+2\cdot\widehat{CAH}\)

\(=2\cdot\widehat{BAC}\)(đpcm)

Nguyễn Quốc Thịnh
Xem chi tiết
Nguyễn Quốc Thịnh
30 tháng 12 2021 lúc 8:41

mình cần gấp trong 20 phút

 

Đỗ Tuệ Lâm
30 tháng 12 2021 lúc 9:28

a, xét tứ giác ADME có:

góc DAC = góc MDA=góc MEA=90\(^o\)

=> ADME là hình chữ nhật

b, DE=AM=5cm

c, xét tứ giác AMBH có:

BA vuông góc HM( MDA=90\(^o\))

=> AMBH là hình thoi

xét tam giác HMK có đường t/b DK(DM=DH,EK=EM)

  =>DE=\(\dfrac{1}{2}HK\)

\(\Leftrightarrow DE=HA=AK\)

 => A là trung điểm HK(HA=HK)

Kiệt Nguyễn
Xem chi tiết
Kiệt Nguyễn
24 tháng 2 2020 lúc 16:27

Em vừa nghĩ ra 2 cách làm bằng kiến thức lớp 7, co check giùm em nhé!

Ta có: \(\widehat{CAD}=90^0-\widehat{DAB}\)

và \(\widehat{CDA}=90^0-\widehat{HAD}\)

Mà \(\widehat{DAB}=\widehat{HAD}\left(gt\right)\Rightarrow AC=DC\)

Tương tự ta có: AB = EB

\(\Rightarrow AB+AC=EB+DC\)

\(=ED+DB+DC=DE+BC\)

\(\Rightarrow DE=AB+AC-BC=3+4-5=2\left(cm\right)\)

Vậy DE = 2 cm

Khách vãng lai đã xóa
Nguyễn Linh Chi
2 tháng 2 2020 lúc 15:17

A B C H D E

Ta có: \(\Delta\)ABC vuông tại A

=> BC\(^2\)=AB\(^2\)+ AC\(^2\)= 3\(^2\)+ 4\(^2\)=  25 => BC = 5 (cm)

Có: \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{3^2}+\frac{1}{4^2}=\frac{25}{144}\)

=> AH = 2,4  (cm)

Có: \(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=3,2\)(cm)

=> BH = 5 - 3,2 = 1,8 ( cm )

AE là phân giác ^CAH => \(\frac{EC}{EH}=\frac{AC}{AH}=\frac{4}{2,4}\) mà EC + EH = CH = 3,2 

=> EC = 2 ( cm ) ; EH = 1,2 ( cm )

AD là phân giác ^BAH  => \(\frac{DH}{DB}=\frac{AH}{AB}=\frac{2,4}{3}\); mà DH + DB = HB = 1,8 

=> DH = 0,8 ( cm ) ; BD = 1( cm )

Vậy DE = DH + HE = 0,8 + 1,2 = 2 ( cm )

Khách vãng lai đã xóa