\(h,\left(0,125\right)^3\times512\)
\(l,\left(0,25\right)^4\times1024\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\left(0,25\right)^4\times1024=?\)
Cách làm lun nha
Viết các số \({\left( {0,25} \right)^8};\,\,{\left( {0,125} \right)^4};{\left( {0,0625} \right)^2}\)dưới dạng lũy thừa cơ số 0,5.
\(\begin{array}{l}{\left( {0,25} \right)^8} = {\left[ {{{\left( {0,5} \right)}^2}} \right]^8}=(0,5)^{2.8} = {\left( {0,5} \right)^{16}};\\{\left( {0,125} \right)^4} = {\left[ {{{\left( {0,5} \right)}^3}} \right]^4} =(0,5)^{3.4}= {\left( {0,5} \right)^{12}};\\{\left( {0,0625} \right)^2} = {\left[ {{{\left( {0,5} \right)}^4}} \right]^2} =(0,5)^{4.2}= {\left( {0,5} \right)^8}\end{array}\)
\(\left(0,25\right)^4\times1024\)
Cac ban vui long giai day du giup minh. Thanks truoc
Viết kết quả mỗi phép tính sau dưới dạng luỹ thừa của \(a\) :
a) \({\left( {\frac{8}{9}} \right)^3} \cdot \frac{4}{3} \cdot \frac{2}{3}\) với \(a = \frac{8}{9};\)
b) \({\left( {\frac{1}{4}} \right)^7} \cdot 0,25\) với \(a = 0,25\);
c) \({( - 0,125)^6}:\frac{{ - 1}}{8}\) với \(a = - \frac{1}{8};\)
d) \({\left[ {{{\left( {\frac{{ - 3}}{2}} \right)}^3}} \right]^2}\) với \(a = \frac{{ - 3}}{2}\).
a) \({\left( {\frac{8}{9}} \right)^3} \cdot \frac{4}{3} \cdot \frac{2}{3} = {\left( {\frac{8}{9}} \right)^3}.\frac{8}{9} = {\left( {\frac{8}{9}} \right)^{3+1}}={\left( {\frac{8}{9}} \right)^4}\)
b) \({\left( {\frac{1}{4}} \right)^7} \cdot 0,25 = {\left( {0,25} \right)^7}.0,25 ={\left( {0,25} \right)^{7+1}}= {\left( {0,25} \right)^8}\)
c) \({( - 0,125)^6}:\frac{{ - 1}}{8} = {\left( {\frac{{ - 1}}{8}} \right)^6}:\frac{{ - 1}}{8} = {\left( {\frac{{ - 1}}{8}} \right)^{6-1}}= {\left( {\frac{{ - 1}}{8}} \right)^5}\)
d) \({\left[ {{{\left( {\frac{{ - 3}}{2}} \right)}^3}} \right]^2} = {\left( {\frac{{ - 3}}{2}} \right)^{3.2}} = {\left( {\frac{{ - 3}}{2}} \right)^6}\)
\(A=\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}+\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}\)
\(A=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{-5\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}+\frac{3\left(0,5+\frac{1}{3}-0,25\right)}{5\left(0,5+\frac{1}{3}-0,25\right)}=-\frac{3}{5}+\frac{3}{5}=0\)
sao bạn tự đăng tự giải thế? hay là bạn giải cho ai à?
Bài 1: Tính:
\(a,\left(0,25\right)^3.32\) \(b,\left(0,125\right)^3.512\) \(c,\dfrac{8^2.4^5}{2^{20}}\) \(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}\)
Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau:
\(a,A=\left|x-\dfrac{3}{4}\right|\) \(b,B=1,5+\left|2-x\right|\) \(c,A=\left|2x-\dfrac{1}{3}\right|+107\) \(d,M=5\left|1-4x\right|-1\)
Bài 3: Tìm giá trị lớn nhất của biểu thức sau:
\(a,C=-\left|x-2\right|\) \(b,D=1-\left|2x-3\right|\) \(c,D=-\left|x+\dfrac{5}{2}\right|\)
(mn giải giúp mk với, thanks mn nhìu!)
\(1,\\ a,=\left(\dfrac{1}{4}\right)^3\cdot32=\dfrac{1}{64}\cdot32=\dfrac{1}{2}\\ b,=\left(\dfrac{1}{8}\right)^3\cdot512=\dfrac{1}{512}\cdot512=1\\ c,=\dfrac{2^6\cdot2^{10}}{2^{20}}=\dfrac{1}{2^4}=\dfrac{1}{16}\\ d,=\dfrac{3^{44}\cdot3^{17}}{3^{30}\cdot3^{30}}=3\\ 2,\\ a,A=\left|x-\dfrac{3}{4}\right|\ge0\\ A_{min}=0\Leftrightarrow x=\dfrac{3}{4}\\ b,B=1,5+\left|2-x\right|\ge1,5\\ A_{min}=1,5\Leftrightarrow x=2\\ c,A=\left|2x-\dfrac{1}{3}\right|+107\ge107\\ A_{min}=107\Leftrightarrow2x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{6}\)
\(d,M=5\left|1-4x\right|-1\ge-1\\ M_{min}=-1\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\\ 3,\\ a,C=-\left|x-2\right|\le0\\ C_{max}=0\Leftrightarrow x=2\\ b,D=1-\left|2x-3\right|\le1\\ D_{max}=1\Leftrightarrow x=\dfrac{3}{2}\\ c,D=-\left|x+\dfrac{5}{2}\right|\le0\\ D_{max}=0\Leftrightarrow x=-\dfrac{5}{2}\)
RÚT GỌN
B= \(\frac{\left(1^4+0,25\right).\left(3^4+0,25\right).\left(5^4+0,25\right)....\left(11^4+0,25\right)}{\left(2^4+0.25\right).\left(4^4+0,25\right).\left(6^4+0,25\right).....\left(12^4+0,25\right)}\)
AI LÀM ĐÚNG CHO 2 TICK LUÔN
0,25 CÁC BẠN CHUYỂN THÀNH 1 PHẦN 4 NHA
\(\text{Xét công thức tổng quát }:x^4+\frac{1}{4}=\left(x^4+2.x^2.\frac{1}{2}+\frac{1}{4}\right)-x^2\)
\(=\left(x^2+\frac{1}{2}\right)^2-x^2=\left(x^2-x+\frac{1}{2}\right)\left(x^2+x+\frac{1}{2}\right)\)
Áp dụng vào B ta đc:
\(B=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)...\left(11^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)...\left(12^4+\frac{1}{4}\right)}\)
\(=\frac{\left(1^2-1+\frac{1}{2}\right)\left(1^2+1+\frac{1}{2}\right)\left(3^2-3+\frac{1}{2}\right)\left(3^2+3+\frac{1}{2}\right)...\left(11^2-11+\frac{1}{2}\right)\left(11^2+11+\frac{1}{2}\right)}{\left(2^2-2+\frac{1}{2}\right)\left(2^2+2+\frac{1}{2}\right)\left(4^2-4+\frac{1}{2}\right)\left(4^2+4+\frac{1}{2}\right)...\left(12^2-12+\frac{1}{2}\right)\left(12^2+12+\frac{1}{2}\right)}\)
\(=\frac{\frac{1}{2}\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)...\left(110+\frac{1}{2}\right)\left(122+\frac{1}{2}\right)}{\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)\left(20+\frac{1}{2}\right)...\left(132+\frac{1}{2}\right)\left(156+\frac{1}{2}\right)}\)
\(=\frac{\frac{1}{2}\left(122+\frac{1}{2}\right)}{\left(132+\frac{1}{2}\right)\left(156+\frac{1}{2}\right)}=\frac{49}{16589}\)
ko biết có đúng ko!! hình như còn 1 cách là nhân 1 đa thức với 16 nữa thì phải lâu ko động đến bạn thử xem đc ko nhé
Tính:
a)\({\left( { - 2} \right)^2}.{\left( { - 2} \right)^3}\); b)\({\left( { - 0,25} \right)^7}:{\left( { - 0,25} \right)^5}\); c)\({\left( {\frac{3}{4}} \right)^4}.{\left( {\frac{3}{4}} \right)^3}.\)
a)\({\left( { - 2} \right)^2}.{\left( { - 2} \right)^3} = {\left( { - 2} \right)^{2 + 3}} = {\left( { - 2} \right)^5}\);
b)\({\left( { - 0,25} \right)^7}:{\left( { - 0,25} \right)^5} = {\left( { - 0,25} \right)^{7 - 5}} = {\left( { - 0,25} \right)^2} = {\left( {0,25} \right)^2}\);
c)\({\left( {\frac{3}{4}} \right)^4}.{\left( {\frac{3}{4}} \right)^3} = {\left( {\frac{3}{4}} \right)^{4 + 3}} = {\left( {\frac{3}{4}} \right)^7}.\)
Tính
a) \(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)
b) \(\left(0,125\right)^3.512\)
c) \(\left(0,25\right)^4.1024\)