Cho C=2X-1/X+2
(X thuộc Z)
Tìm X để C là số nguyên
CHO
C=2x-1/x+2
(x thuộc Z)
TÌM X ĐỂ C LÀ SỐ NGUYÊN
Ta có: \(C=\frac{2x-1}{x+2}=\frac{2x+4-5}{x+2}=\frac{2\left(x+2\right)}{x+2}-\frac{5}{x+2}=2+\frac{5}{x+2}\)
Để C nguyên thì \(x+2\inƯ\left(5\right)\)
\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
x+2 | -1 | 1 | -5 | 5 |
x | -3 | -1 | -7 | 3 |
Vậy: \(x\in\left\{-7,-3,-1,3\right\}\)
=.= hok tốt !!
cho phân số C=x+4/2x-1(x thuộc Z)tìm các giá trị x để C có giá trị là số nguyên
Cho C=2X-1/X+2
(X thuộc Z)
Tìm X để C là số nguyên
GIÚP MK NHA CÁC BN
a, Tính A khi x=1, x=2, x=5/2.
b, Tìm x thuộc Z để A là số nguyên.
c, Tìm x thuộc Z để B là số nguyên.
d, Tìm x thuộc Z để A, B cùng là số nguyên.
1.Cho
B= 2|x|+3 \ 3|x|-1 ( x thuộc Z)
a: tìm x thuộc z để B đạt GTLN
b: tìm x thuộc z để B có giá trị là số tự nhiên
2.Cho x-y=2 ( x,y thuộc Z)
Tìm GTNN
C= |2x+1| + |2y+1|
1.Cho
B= 2|x|+3 \ 3|x|-1 ( x thuộc Z)
a: tìm x thuộc z để B đạt GTLN
b: tìm x thuộc z để B có giá trị là số tự nhiên
2.Cho x-y=2 ( x,y thuộc Z)
Tìm GTNN
C= |2x+1| + |2y+1|
bài 1:Tìm x thuộc Z để các phân số sau có GT là số nguyên
C=\(\frac{2x+3}{7}\)
bài 2:Tìm x thuộc Z để C=\(\frac{6x-1}{3x+2}\)đạt GTNN
a) Giả sử \(C=\frac{2x+3}{7}=t\left(t\in Z\right)\)
\(\Rightarrow x=\frac{7t-3}{2}\). Để \(x\in Z\) thì t phải lẻ. Nói cách khác \(t=2k+1\left(k\in Z\right)\)
Suy ra \(x=\frac{7\left(2k+1\right)-3}{2}=14k+2\)
Vậy để \(\frac{2x+3}{7}\in Z\) thì \(x=14k+2\left(k\in Z\right)\)
b) Ta thấy \(C=\frac{6x-1}{3x+2}=\frac{\left(6x+4\right)-5}{3x+2}=2-\frac{5}{3x+2}\)
Do x nguyên nên C đạt GTNN khi \(\frac{5}{3x+2}\) lớn nhất. Điều này xảy ra khi 3x + 2 = 2 hay x = 0.
Vậy \(minC=-\frac{1}{2}\) khi x = 0.
1.Cho
B= 2|x|+3 \ 3|x|-1 ( x thuộc Z)
a: tìm x thuộc z để B đạt GTLN
b: tìm x thuộc z để B có giá trị là số tự nhiên
2.Cho x-y=2 ( x,y thuộc Z)
Tìm GTNN
C= |2x+1| + |2y+1|
giúp mình nha
Cho Q= 2x-9 / x^2-5x+6 - x+3/ x-2 - 2x+1 /3-x a) TÌm ĐKXĐ và rút gọn Q b) TÌm x để P < 1 c) Tìm x thuộc Z để P đạt giá trị nguyên dương nhỏ nhất
a: ĐKXĐ: x<>2; x<>3
\(Q=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}=\dfrac{x+1}{x-3}\)
b: Để P<1 thì P-1<0
=>\(\dfrac{x+1-x+3}{x-3}< 0\)
=>x-3<0
=>x<3