chứng minh răng \(b=2^{2000}+2^{2002}\)chia hết cho 20
Chứng minh rằng B= 22000 + 22002 chia hết cho 5120
Chứng minh rằng : 2^2000+2^2002 chia hết cho 510
bạn vô đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Chứng minh rằng : 22000 + 22002 chia hết cho 5120 .
Có 2^2000+2^2002=2^1990*2^10+2^1990*2^12=2^1990*(2^10+2^12)=2^1990*5120 chia hết cho 5120
Vậy 2^2000+2^2002 chia hết cho 5120
chứng minh rằng x^2002 +x^2000 + 1 chia hết cho x^2 +x +1
chứng minh
22000+22002 chia hết cho 5120
\(2^{2000}+2^{2002}=2^{2000}\left(1+2^2\right)\\ =2^{1990}\cdot2^{10}\cdot5\\ =2^{1990}\cdot5120\\ \RightarrowĐpcm\)
chứng minh D = 22000 + 22002 chia hết cho 5120
D= 22000+22002
= 21990.(210+212)
= 21990 . 5120 chia hết cho 5120
=> D chia hết cho 5120
Chứng minh 32002 -22002+32000-22000 chia hết cho 10
Mình đang cần rất gấp ai làm được giúp mình nha.
Ta có:
\(3^{2002}-2^{2002}+3^{2000}-2^{2000}\)
\(=3^{2002}+3^{2000}-\left(2^{2002}+2^{2000}\right)\)
\(=3^{2000}\left(3^2+1\right)-2^{2000}\left(2^2+1\right)\)
\(=3^{2000}.10-2^{1999}.10=10\left(3^{2000}-2^{1999}\right)⋮10\)
Vậy.....
23/02/2015 lúc 13:52
So sánh :a) 6256 và 1259
b) 544 và 2112
c) 1031 và 2100 tích cho mk ik
Chứng minh x2002+x2000+1 chia hết cho x2+x+1
Lời giải:
$x^{2002}+x^{2000}+1=(x^{2002}-x)+(x^{2000}-x^2)+(x^2+x+1)$
$=x(x^{2001}-1)+x^2(x^{1998}-1)+(x^2+x+1)$
$=x[(x^3)^{667}-1]+x^2[(x^3)^{666}-1]+(x^2+x+1)$
$=x(x^3-1)[(x^3)^{666}+...+x^3+1]+x^2(x^3-1)[(x^3)^{665}+...+x^3+1]+(x^2+x+1)$
$=x(x-1)(x^2+x+1)[(x^3)^{666}+...+x^3+1]+x^2(x-1)(x^2+x+1)[(x^3)^{665}+...+x^3+1]+(x^2+x+1)$
$=(x^2+x+1)[x(x-1)[(x^3)^{666}+...+x^3+1]+x^2(x-1)[(x^3)^{665}+...+x^3+1]+1]\vdots x^2+x+1$
chứng minh x^2002+x^2000+1 chia hết x^2+x+1
áp dụng : x3m+2+x3n+1+1 luon chia hết cho (x2+x+1) voi71 m,n E N
\(x^{2000}\left(x^2+x+1\right)-\left(x^{2001}-1\right)\)số hạng thứ nhất hiển nhiên chia hết cho A=x^2+x+1 khác 0 với mọi x
xét: \(C=x^{2001}-1\)
Nếu x=1 => C=0 hiển nhiên C chia hết cho A
nếu x khác 1
\(B=\left(1+x+x^2+...+x^{2000}\right)=\frac{\left(x^{2001}-1\right)}{\left(x-1\right)}=\frac{C}{x-1}\)
B có 2001 số hạng chia hết cho 3 => ghép 3 số hạng liên tiếp có
\(B=\left(1+x+x^2\right)+x^3\left(1+x+x^2\right)+x^6\left(1+x+x^2\right)+..+x^{1998}\left(1+x+x^2\right)\)
Hiển nhiên B chia hết cho A
C=B(x-1) chia hết cho A do B chia hết cho A
=> DPCM