Với mọi n thuộc N, thì 2n chia hết cho 2(đúng hay sai)
" Với mọi số tự nhiên n, n(n+1)(2n+1) chia hết cho 6 " mệnh đề này đúng hay sai? Vì sao?
Đúng xét 3 TH
TH1: n chia hết 3 suy ra n(n+1)(2n+1) chia hết cho 3
TH2 : n : 3 dư 1 suy ra n =3k+1 suy ra 2n+1=6k+2+1 chia hết cho 3 suy ra n(n+1)(2n+1) chia hết cho 3
TH3 : n : 3 dư 2 suy ra n =3k+2 suy ra n+1=3k+3 chia hết cho 3 suy ra n(n+1)(2n+1) chia hết cho 3
Hà Văn Việt sai rồi vì nếu n=0 thì 0 chia hết cho 6(đúng)
Đúng
Ta có n(n+1) là tích của 3 số tự nhiên liên tiếp
=> n(n+1) chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2 (1)
Ta lại có: n(n+1)(2n+1)=n(n+1)(n-1+n+2)=(n-1)n(n+1)+n(n+1)(n+2)
(n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp => (n-1)n(n+1) chia hết cho 3 (2)
n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp => n(n+1)(n+2) chia hết cho 3 (3)
Từ (2) và (3) => (n-1)n(n+1)+n(n+1)(n+2) chia hết cho 3 hay n(n+1)(2n+1) chia hết cho 3(4)
Mà (2;3)=1 (5)
Từ (1)(4) và (5) => n(n+1)(2n+1) chia hết cho 6 với mọi n là số tự nhiên
Vậy,mệnh đề đúng
Xét hai mệnh đề chứa biến P(n): “ 3 n < n + 100 ” và Q(n): " 2 n > n " với n ∈ N * .
a) Với n = 1, 2, 3, 4, 5 thì P(n), Q(n) đúng hay sai?
b) Với mọi n ∈ N* thì P(n), Q(n) đúng hay sai?
a) Xét P(n) : “3n < n + 100”:
+ Với n = 1, P(1) trở thành: “31 < 1 + 100”. Mệnh đề đúng vì 31 = 3 < 1 + 100 = 101.
+ Với n = 2, P(2) trở thành: “32 < 2 + 100”. Mệnh đề đúng vì 32 = 9 < 2 + 100.
+ Với n = 3, P(3) trở thành: “33 < 3 + 100”. Mệnh đề đúng vì 33 = 27 < 3 + 100.
+ Với n = 4, P(4) trở thành: “34 < 4 + 100”. Mệnh đề đúng vì 34 = 81 < 4 + 100.
+ Với n = 5, P(5) trở thành: “35 < 5 + 100”. Mệnh đề sai vì 35 = 243 > 5 + 100.
Xét Q(n): “2n > n”.
+ Với n = 1, Q(1) trở thành: “21 > 1”. Mệnh đề đúng vì 21 = 2 > 1.
+ Với n = 2, Q(2) trở thành: “22 > 2”. Mệnh đề đúng vì 22 = 4 > 2.
+ Với n = 3, Q(3) trở thành: “23 > 3”. Mệnh đề đúng vì 23 = 8 > 3.
+ Với n = 4, Q(4) trở thành: “24 > 4”. Mệnh đề đúng vì 24 = 16 > 4.
+ Với n = 5, Q(5) trở thành: “25 > 5”. Mệnh đề đúng vì 25 = 32 > 5.
b)
+ Nhận thấy P(n) không đúng với mọi n ∈ N* (sai với n = 5).
+ Với mọi n ∈ N*, Q(n) luôn đúng.
cmr với mọi n thuộc N* thì 6^2n+1 + 5^n+2 chia hết cho 31
Xét n=0 => 62n+1 + 5n+2 = 31chia hết 31
Xét n=1 => 62n+1 + 5n+2 = 341 chia hết 31
Giả sử mệnh đề đúng với n = k,tức là có 62k+1 + 5k + 2,ta sẽ chứng minh mệnh đề đúng với n = k+1 tức là chứng minh 62k+3 + 5k+3
Ta có 62k+1 + 5k+2 = 36k .6+5k .25 chia hết 31
<=> 62k+3 + 5k+3 = 36k .216+5k .125
Xét hiệu : 62k+3 + 5k+3 − 62k+1 − 5k+2 = 36k .216+5k .125−36k .6−5k .25
= 36k .210+5k .100 = 36k .207+5k .93−7(36k−5k ) Có 217 chia hết 31, 93 chia hết 31và 36k−5k chia hết 36 - 5 = 31
=> 62n+3 + 5k+3 − 62k+1 − 5k+2 chia hết 31
. Mà 62k+1 + 5k+2 chia hết 31 nên 62k+3 + 5k+3 chia hết 31
Phép quy nạp được chứng minh hoàn toàn,ta có đpcm
:D
Ta có: \(6^2\equiv5\left(mod31\right)\)
\(\Rightarrow6^{2n}\equiv5^n\left(mod31\right)\)
\(6^{2n+1}\equiv6.5^n\left(mod31\right)\)
Lại có: 5\(5\equiv5\left(mod31\right)\)
\(\Rightarrow5^n\equiv5^n\left(mod31\right)\)
\(\Rightarrow5^{n+2}\equiv25.5^n\left(mod31\right)\)
\(\Rightarrow6^{2n+1}+5^{n+2}\equiv31.5^n\left(mod31\right)\)
\(\Rightarrow6^{2n+1}+5^{n+2}⋮31\)
CMR với mọi n thuộc Z thì :2n+1 chia hết cho 2n2-1
Tham khảo:1)CMR với mọi số m,n nguyên thì:a)n^2[(n^2)-1] chia hết cho 12?
A = n²(n²-1)
* vì n² chia 3 dư 0 hoặc 1 nên n² và n²-1 có một số chia hết cho 3
=> n²(n²-1) chia hết cho 3
* n² chia 4 dư 0 hoặc 1 nên n²(n²-1) có một số chia hết cho 4
=> n²(n²-1) chia hết cho 4
vì 3 và 4 là hai số nguyên tố cùng nhau nên A = n²(n²-1) chia hết cho 3.4 = 12
Chứng minh rằng:
a. \(3^{2n+1}+2^{n+2}\)chia hết cho 7 với mọi n thuộc N
b. \(3^{2n+2}+2^{6n+12}\)chia hết cho 11 với mọi n thuộc N.
c. \(_{ }\) \(7^{2n+1}-48-7\)chia hết cho 288 với mọi n thuộc N
a, Ta có:
\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)
Ta lại có:
\(9^n-2^n⋮9-2=7;2n.7⋮7\)
\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)
CMR với mọi n thuộc Z thì \(n^4+2n^3-n^2-2n\) chia hết cho 24
\(n^4+2n^3-n^2-2n\)
\(=n^2\left(n^2-1\right)+2n\left(n^2-1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Tích của 4 số nguyên liên tiếp chia hết cho 24
=> n4 + 2n3 - n2 - 2n chia hết cho 24.
\(n^4+2n^3-n^2-2n=n^3\left(n+2\right)-n\left(n+2\right)=n\left(n+2\right)\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Trong \(4\) số tự nhiên liên tiếp có \(2\) số chẵn liên tiếp
Trong hai số chẵn liên tiếp có :
+) Một số chẵn chia hết cho \(2\)
+) Một số chẵn chia hết cho \(4\)
Nên tích \(2\) số chẵn liên tiếp chia hết cho \(8\)
Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(8\)
Ta cũng có : Tích \(3\) số tự nhiên chia hết cho \(3\)
Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)
Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)
Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(24\left(=8.3\right)\)
Hay \(n^4+2n^3-n^2-2n⋮24\forall n\in Z\)
đặt A = n . ( 2n + 7 ) . ( 7n + 1 )
Ta thấy trong 2 số n và 7n + 1 sẽ có 1 số chẵn với mọi n thuộc N
A = n . ( 7n + 1 ) \(⋮\)2 ( 1 )
Ta cần chứng minh : n . ( 2n + 7 ) . ( 7n + 1 ) \(⋮\)3
Giả sử : n = 3k + r ( k \(\in\)N , r = { 0 ; 1 ;2 } )
với n = 3k \(\Rightarrow\)n \(⋮\)3 \(\Rightarrow\)A \(⋮\)3
với n = 3k + 1 \(\Rightarrow\)2n + 7 = 6k + 9 \(⋮\)3 \(\Rightarrow\)A \(⋮\)3
với n = 3k + 2 \(\Rightarrow\)7n + 1 = 21k + 15 \(⋮\)3 \(\Rightarrow\)A \(⋮\)3
Như vậy, A \(⋮\)3 \(\forall\)n \(\in\)N ( 2 )
Mà ( 2 ; 3 ) = 1
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)A \(⋮\)6
CHỨNG MINH RẰNG:
a. \(11^{n+2}+12^{2n+1}\)chia hết cho 133 với mọi n thuộc N.
b. \(3^{4n+2}+2.4^{3n+1}\)chia hết cho 17 với mọi n thuộc N.
c. \(3.5^{2n+1}+2^{3n+1}\)chia hết cho 17 với mọi n thuộc N.
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
cmr với mọi n thuộc N thì 13^n+2 +11^2n+1 -50 *13^n chia hết cho 108