Bài 2: Cho tứ giác ABCD có AC là phân giác của góc A. CM tứ giác ABCD là hình thang.
Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.
Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.
Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.
Bài 4: a)Tính số đo của các góc trong tứ giác ABCD, biết góc A:góc B:góc C:góc D=2:2:1:1.
b)Tứ giác ABCD là hình gì?Vì sao?
Bài 5:Cho tam giác ABC cân tại A. Kẻ các phân giác BD,CE của các góc B và C.
a)Cm: Tam giác ADB= tam giác AEC.
b)Cm: Tứ giác BEDC là hình thang cân có cạnh bên bằng 1/2 đáy.
Bài 6:Cho tam giác ABC vuông tại A có góc ABC=60 độ. Kẻ tia Ax song song với BC.Trên tia Ax lấy điểm D sao cho AD=BC.
a) Tính số đo các góc BAD và BAC.
b)Cm tứ giác ABCD là hình thang cân.
Mình đang cần gấp nên mong các bạn giải giùm mình. ^-^
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
a) hình thang ABCD (AB//CD) có A - D = 20 độ , B=2C. Tính các góc trong hình thang
b) cho tứ giác ABCD có AB=BC và AC là phân giác của góc A . Chứng minh tứ giác ABCD là phân giác
a) hình thang ABCD (AB//CD) có A - D = 20 độ , B=2C. Tính các góc trong hình thang
b) cho tứ giác ABCD có AB=BC và AC là phân giác của góc A . Chứng minh tứ giác ABCD là phân giác
Cho tứ giác ABCD có AB = BC AC là tia phân giác của góc C Chứng minh tứ giác ABCD là hình thang
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{DAC}\)
nên \(\widehat{DAC}=\widehat{BCA}\)
mà hai góc ở vị trí so le trong
nên AD//BC
hay ABCD là hình thang
Bài 1: Tứ giác ABCD có AB=BC=CD và Góc D+B=180 độ
a, Chứng minh AC là phân giác góc A
b, Tứ giác ABCD là hình gì? tại sao?
Bài 2: Cho hình thang ABCD (AB//CD). M là trung điểm của AD sao cho CM là phân giác góc C. Biết MB=6cm, MC=8cm
a, BC=?
b, So sánh khoảng cách từ M đến BC và đường cao hình thang.
Bài 3: Cho tứ giác ABCD, AC là phân giác góc A. Gọi I,K lần lượt là trung điểm của AD,BC. IK cắt AC tại S.
a, Cmr: S là trung điểm của AC
b, Từ C kẻ Cx//AD. Cx cắt AB tại M. Tứ giác ABCD là hình gì? tại sao?
Bài 4: Cho tứ giác ABCD gọi E,F lần lượt là trung điểm của BC và AD.
Cmr:
a,EF<(AB+CD)/2
b, Tứ giác ABCD<=>EF<(AB+CD)/2
Bài 5: Cho hình thang ABCD (AB//CD), AB<CD. AC cắt BD tại O. Biết gócDOC=60 độ
AD=6cm. P,Q,R lần lượt là trung điểm của OA,OD. Tính chu vi tam giác PQR
Bài 6: Cho tam giác ABC, D thuộc AB sao cho BD=1/4 AB, E là trung điểm vủa BC. Đường thẳng DE cắt AC tại F. Cmr: CF=1/2AC.
Các bạn xem làm giúp mình với nhé mình sắp phải nộp rồi
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân
Bài 2. Cho tứ giác ABCD có B̂ = 105° ; D̂ = 75° ; AB = BC = CD. Chứng minh rằng:
a) AC là tia phân giác của của góc A.
b) ABCD là hình thang cân.
a: Sửa đề: \(\widehat{C}=75^0\)
Xét tứ giác ABCD có \(\widehat{B}+\widehat{C}=180^0\)
nên ABCD là hình thang
Suy ra: \(\widehat{BAC}=\widehat{ACD}\)
mà \(\widehat{BAC}=\widehat{BCA}\)
nên \(\widehat{ACD}=\widehat{ACB}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
1)Cho hình thang ABCD có góc A = 30 độ, góc C = 120 độ. Tính góc B, góc D trong các trường hợp sau:
a) TH1: AB//CD
b)TH2: AD//BC
2)Cho tứ giác ABCD có DB là tia phân giác của góc D. DC=CB. Cm tứ giác ABCD là hình thang
3) Cho tam giác ABC cân tại A. BD, CE là các đường cao. Cm:
a) BE=CD
BD=CE
b) AD=AE
c) tứ giác BEDC là hình thang
M.n giúp mình làm 3 bài này vs ạ :)) Mình c.ơn :)))
b1 a) goi I la giao diem cua AD va BC
vi AB//DC => goc IDC = goc DAB (2 goc dong vi)
ma goc A =30 => goc IDC =30
lai co goc IDC + goc ADC =180 ( I,D,A thang hang)
30+ goc ADC =180 => goc ADC=150
vi AB//DC => goc ICD = goc CBA (2 goc dong vi)
có goc ICD+ goc DCB =180 (I,C,B thang hang )
goc ICD+ 120=180 => goc ICD = 60 => goc ABC=60
còn ý b) bạn làm tương tự nhé
b2
vi DC =BC (gt) => tam giac DCB can tai C => goc CDB = goc DBC (1)
vi DB la phan giac cua goc ADC => g ADB =g BDC (2)
tu (1,2) => g ADB = g DBC
ma 2 goc nay o vi tri so le trong
=> AD// BC => ABCD la hinh thang
bài 2:
Ta có: DC = BC
=> Góc CDB = góc CBD ( quan hệ giữa góc và cạnh đối diện)
Mà góc ADB = góc CDB ( gt)
=> Góc ADB = góc CBD
Mà 2 góc này ở vị trí so le trong => AB //CD
=> ABCD là hình thang
Bài 3:
a) xét tam giác BEC và tam giác CDB có:
Góc CEB = góc BDC = 90 độ
BC là cạnh chung
Góc B = góc C ( tam giác ABC cân tại A)
=> Tam giác BEC = tam giác CDB ( ch-cgv)
=> BE = DC ( 2 cạnh tương ứng)
=> BD = CE ( 2 cạnh tương ứng )
b) Ta có: AE + EB = AB
AD + DC = AC
Mà EB = DC ( CMT)
AB = AC ( tam giác ABC cân tại A)
=> AE = AD
c) Ta có: AE = AD => tam giác AED cân tại A
=> góc AED = góc ADE = \(\frac{180-A}{2}\)(1)
Ta có tam giác ABC cân tại A
=> góc B = góc C =\(\frac{180-A}{2}\) (2)
Từ (1) và(2) => góc AED = góc B
Mà 2 góc này ở vị trí đồng vị=> ED//BC=> BEDC là hình thang
Bài 6. Cho tứ giác ABCD có AD = DC, đường chéo AC là phân giác góc Â. Chứng minh rằng ABCD là hình thang.
tam giác adc cân tại d nên góc dac= góc acd
suy ra góc bac= góc acd
nên ab//cd
vậy abcd là hình thang
ảo thuật đấy
tứ giác ABCD cóAB=CD và AC là tia phân giác của góc A . chứng inh tứ giác ABCD là hình thang và vẽ hình