Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TTHN
Xem chi tiết
Dương Phúc Thắng
19 tháng 11 2017 lúc 11:31

dùng bđt cauchy chứng minh biểu thức trên >=2 rồi chứng minh dấu = không xảy ra

Toàn Quyền Nguyễn
Xem chi tiết
Nguyễn Ngọc Anh Minh
27 tháng 9 2016 lúc 8:17

a/ \(\frac{a+b}{a-b}-\frac{c+a}{c-a}=\frac{\left(a+b\right)\left(c-a\right)-\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(c-a\right)}=.\)

\(=\frac{\left(ac-a^2+bc-ab\right)-\left(ac-bc+a^2-ab\right)}{\left(a-b\right)\left(c-a\right)}=\frac{2bc-2a^2}{\left(a-b\right)\left(c-a\right)}=\)

\(=\frac{2bc-2bc}{\left(a-b\right)\left(c-a\right)}=0\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

b/ \(=\frac{bc+c^2}{b^2+bc}=\frac{c\left(b+c\right)}{b\left(b+c\right)}=\frac{c}{b}\) (dpcm)

Nguyen Thi Phuong Anh
Xem chi tiết
alibaba nguyễn
7 tháng 1 2018 lúc 16:24

C, d của VT đâu b

Phạm Băng Băng
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 10 2019 lúc 20:21

\(\frac{\sqrt{a}^2}{\sqrt{b}}+\frac{\sqrt{b}^2}{\sqrt{a}}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{b}+\sqrt{a}}=\sqrt{a}+\sqrt{b}\)

Dấu "=" xảy ra khi \(a=b\)

Khách vãng lai đã xóa
no
Xem chi tiết
zZ Tao Láo Nhưng Tao Khô...
24 tháng 1 2016 lúc 6:45

lấy bút xóa mà xóa hết là khỏe

Real Madrid
24 tháng 1 2016 lúc 7:02

\(botay.com.vn\)

no
24 tháng 1 2016 lúc 10:34

giai dum cai dang can gap

 

thien ty tfboys
Xem chi tiết
thien ty tfboys
3 tháng 12 2015 lúc 8:44

cac ban khong lam thi minh lam nhe 

sang tien cho **** 

he he he he!

Vi :\(0<\frac{a}{b}<1\left(b>0\right)\) nen a<b ma m>0, do do am<bm , them ab vao 2 ve : 

ab+am<ab+bm hay a(b+m)<b(a+m) ma b>0 va b+m>0 nen suy ra : 

\(\frac{a}{b}<\frac{a+m}{b+m}\)

**** nhe moi ng 

 

Nguyễn Hoài Phương
Xem chi tiết
ho duc truong
Xem chi tiết
Nguyễn Minh Đăng
1 tháng 8 2019 lúc 16:16

<=>\(\sqrt[3]{a}.b=\sqrt[3]{a.b^3}\)(luôn đúng)=>dpcm :v

Meo muop den
1 tháng 8 2019 lúc 16:25

\(\sqrt[3]{\frac{a}{b^2}}=\sqrt[3]{\frac{ab}{b^3}}=\frac{\sqrt[3]{ab}}{\sqrt[3]{b^3}}=\frac{\sqrt[3]{ab}}{b}\)

Phạm Văn Việt
Xem chi tiết
LIVERPOOL
22 tháng 10 2017 lúc 7:14

Đặt a-1=x, b-1=y (\(x,y>\frac{\sqrt{5}-3}{2}\))

=> \(xy=1\)

VT= \(\frac{1}{\left(x+1\right)^2+x}+\frac{1}{\left(y+1\right)^2+y}=\frac{1}{\left(\frac{1}{y}+1\right)^2+\frac{1}{y}}+\frac{1}{\left(y+1\right)^2+y}=\frac{y^2+1}{\left(y+1\right)^2+y}\)\(=\frac{2}{5}-\frac{3\left(y-1\right)^2}{\left(y+1\right)^2+y}\ge\frac{2}{5}\)(do \(\left(y+1\right)^2+y=b^2+b-1>0\))

Dấu bằng khi \(x=y=1\)=> \(a=b=2\)

Nguyễn Duy Long
24 tháng 10 2017 lúc 19:46

đơn giản hơn cách của quý đây

a+b=ab => \(\frac{1}{a}+\frac{1}{b}=1\)Đặt \(\frac{1}{a}=x;\frac{1}{y}=b\)

Khi đó \(\frac{1}{a^2+a-1}=\frac{1}{\left(\frac{1}{x}\right)^2+\frac{1}{x}-1}=\frac{x^2}{1+x-x^2}\)

Chứng minh tương tự với b

=> Đặt A=\(\frac{1}{a^2+a-1}+\frac{1}{b^2+b-1}=\frac{x^2}{1+x-x^2}+\frac{y^2}{1+y-y^2}\)

Cauchy-Schwarz và nhớ: x+y=1 và x2+y2 >=1/2

OK