chung minh rang :
Neu a,b trai dau thi \(\frac{b-a}{b\sqrt{\frac{-a}{b}}}=\frac{a-b}{a\sqrt{\frac{-b}{a}}}\)
Gia su a, b, c la cac so duong, chung minh rang: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\)
dùng bđt cauchy chứng minh biểu thức trên >=2 rồi chứng minh dấu = không xảy ra
Chung minh rang neu a^2=bc thi
a) \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
b) \(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
a/ \(\frac{a+b}{a-b}-\frac{c+a}{c-a}=\frac{\left(a+b\right)\left(c-a\right)-\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(c-a\right)}=.\)
\(=\frac{\left(ac-a^2+bc-ab\right)-\left(ac-bc+a^2-ab\right)}{\left(a-b\right)\left(c-a\right)}=\frac{2bc-2a^2}{\left(a-b\right)\left(c-a\right)}=\)
\(=\frac{2bc-2bc}{\left(a-b\right)\left(c-a\right)}=0\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
b/ \(=\frac{bc+c^2}{b^2+bc}=\frac{c\left(b+c\right)}{b\left(b+c\right)}=\frac{c}{b}\) (dpcm)
Cho các số thực dương a,b,c,d. Chung minh rang \(\frac{b}{\left(a+\sqrt{b}\right)^2}+\frac{a}{\left(b+\sqrt{a}\right)^2}\ge\frac{\sqrt{bd}}{ac+\sqrt{bd}}\)
Giup mk voi cac ban
1. Chmr neu a, b>0 thi
\(\sqrt{a}+\sqrt{b}\le\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\)
\(\frac{\sqrt{a}^2}{\sqrt{b}}+\frac{\sqrt{b}^2}{\sqrt{a}}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{b}+\sqrt{a}}=\sqrt{a}+\sqrt{b}\)
Dấu "=" xảy ra khi \(a=b\)
cho a,b,c la ba so thuc duong thoa man dieu kien a+b+c=1
chung minh rang P=\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\le\frac{3}{2}\)
lấy bút xóa mà xóa hết là khỏe
Chung minh rang neu : \(0<\frac{a}{b}<1;b>0;m>0\) thi \(\frac{a}{b}<\frac{a+m}{b+m}\)
cac ban khong lam thi minh lam nhe
sang tien cho ****
he he he he!
Vi :\(0<\frac{a}{b}<1\left(b>0\right)\) nen a<b ma m>0, do do am<bm , them ab vao 2 ve :
ab+am<ab+bm hay a(b+m)<b(a+m) ma b>0 va b+m>0 nen suy ra :
\(\frac{a}{b}<\frac{a+m}{b+m}\)
**** nhe moi ng
cmr neu \(\sqrt{a.a'}+\sqrt{b.b'}+\sqrt{c.c'}=\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\)
voi a,a',b,b',c,c'>0 thi \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
CHUNG MINH RANG
\(\sqrt[3]{\frac{a}{_b2}}=\frac{\sqrt[3]{ab}}{b}\)
<=>\(\sqrt[3]{a}.b=\sqrt[3]{a.b^3}\)(luôn đúng)=>dpcm :v
\(\sqrt[3]{\frac{a}{b^2}}=\sqrt[3]{\frac{ab}{b^3}}=\frac{\sqrt[3]{ab}}{\sqrt[3]{b^3}}=\frac{\sqrt[3]{ab}}{b}\)
cho \(\hept{\begin{cases}a,b>\frac{\sqrt{5}-1}{2}\\a+b=ab\end{cases}}\)chung minh rang:
\(\frac{1}{a^2+a-1}+\frac{1}{b^2+b-1}\ge\frac{2}{5}\)
Đặt a-1=x, b-1=y (\(x,y>\frac{\sqrt{5}-3}{2}\))
=> \(xy=1\)
VT= \(\frac{1}{\left(x+1\right)^2+x}+\frac{1}{\left(y+1\right)^2+y}=\frac{1}{\left(\frac{1}{y}+1\right)^2+\frac{1}{y}}+\frac{1}{\left(y+1\right)^2+y}=\frac{y^2+1}{\left(y+1\right)^2+y}\)\(=\frac{2}{5}-\frac{3\left(y-1\right)^2}{\left(y+1\right)^2+y}\ge\frac{2}{5}\)(do \(\left(y+1\right)^2+y=b^2+b-1>0\))
Dấu bằng khi \(x=y=1\)=> \(a=b=2\)
đơn giản hơn cách của quý đây
a+b=ab => \(\frac{1}{a}+\frac{1}{b}=1\)Đặt \(\frac{1}{a}=x;\frac{1}{y}=b\)
Khi đó \(\frac{1}{a^2+a-1}=\frac{1}{\left(\frac{1}{x}\right)^2+\frac{1}{x}-1}=\frac{x^2}{1+x-x^2}\)
Chứng minh tương tự với b
=> Đặt A=\(\frac{1}{a^2+a-1}+\frac{1}{b^2+b-1}=\frac{x^2}{1+x-x^2}+\frac{y^2}{1+y-y^2}\)
Cauchy-Schwarz và nhớ: x+y=1 và x2+y2 >=1/2
OK