Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
LUU HA
Xem chi tiết
Edogawa Conan
26 tháng 8 2020 lúc 13:56

Ta có: \(x^2y^2+x^2+y^2+4xy=73\)

<=>  \(\left(x^2y^2+4xy+4\right)+x^2+y^2=77\)

<=> \(\left(xy+2\right)^2+x^2=77-y^2\) (1)

Do \(\left(xy+2\right)^2+x^2\ge0\) => \(77-y^2\ge\)0 => \(y^2\le77\)

Do y nguyên và y2 là số chính phương => y2 \(\in\){0; 1; 4; 9; 16; 25; 36; 49; 64}

=> \(y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5;\pm6;\pm7;\pm8\right\}\)

thay y vào pt (1) ... (tự làm)

Hoặc C2:

\(x^2y^2+x^2+y^2+4xy=73\)

<=> \(\left(x^2y^2+2xy+1\right)+\left(x^2+2xy+y^2\right)=74\)

<=> \(\left(xy+1\right)^2+\left(x+y\right)^2=74=5^2+7^2\)

Xét các TH xảy ra: 

+) \(\hept{\begin{cases}xy+1=5\\x+y=7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-5\\x+y=7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=5\\x+y=-7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-5\\x+y=-7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=7\\x+y=5\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-7\\x+y=5\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=7\\x+y=-5\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-7\\x+y=-5\end{cases}}\)

(Tự tính)

Khách vãng lai đã xóa
ĐỖ THỊ ANH THƯ
Xem chi tiết
Ngọc Sunnies
Xem chi tiết
Thanh Dii
Xem chi tiết
Cô Pê
Xem chi tiết
Pham Van Hung
5 tháng 12 2018 lúc 21:39

\(x^2-4xy+5y^2=2\left(x-y\right)\)

\(\Leftrightarrow x^2-4xy+5y^2-2x+2y=0\)

\(\Leftrightarrow\left(x-2y\right)^2-2\left(x-2y\right)+1+y^2-2y+1=2\)

\(\Leftrightarrow\left(x-2y-1\right)^2+\left(y-1\right)^2=2\)

Vì x,y là số nguyên nên ta có các trường hợp: 

TH1: \(\hept{\begin{cases}x-2y-1=1\\y-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\y=2\end{cases}}\)

TH2: \(\hept{\begin{cases}x-2y-1=-1\\y-1=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

TH3: \(\hept{\begin{cases}x-2y-1=-1\\y-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=2\end{cases}}\)

TH4: \(\hept{\begin{cases}x-2y-1=1\\y-1=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=0\end{cases}}\)

Vậy \(\left(x;y\right)\in\left\{\left(6;2\right),\left(0;0\right),\left(4;2\right),\left(2;0\right)\right\}\)

\(\)

Darlingg🥝
7 tháng 11 2019 lúc 22:02

x2−4xy+5y2=17x2−4xy+5y2=2

⇔(x−2y)2+y2=17⇔(x−2y)2+y2=2

= 2 + 1

= 1 + 2

Ta có bảng sau:

x-2y11-1-144-4-4
y4-44-41-11-1
x9-77-962-2-6
y4-44-41-11-1

Vậy (x;y)={(9;4);(−7;−4);(7;4);(−9;−4);(6;1);(2;−1);(−2;1);(−6;−1)}

Khách vãng lai đã xóa
Long Nguyễn
Xem chi tiết
Yim Yim
Xem chi tiết
Trầnnhy
Xem chi tiết
ngonhuminh
17 tháng 7 2017 lúc 9:53

bài 1

coi bậc 2 với ẩn x tham số y D(x) phải chính phường

<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2

=> -8y^2 +1 =k^2 => y =0

với y =0 => x =-1 và -2

ngonhuminh
17 tháng 7 2017 lúc 8:09

1)

f(x) =x^2 -(2y -3)x +2y^2 -3y+2 =0
cần x nguyên
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
<=> 4y^2 -12y +9 -8y^2 +12y -8 =k^2
<=> -4y^2 +1 =k^2
<=> k^2 +4y^2 =1
=> y=0
với y =0 => x =-1 ; x =-2
kết luận
(x,y) =(-1;0) ; (-2;0)

2)

<=> y(xy^2 +y+4x) =6
xét g(y) =xy^2 +y+4x phải nguyên
=> $\Delta$ (y) =1 -16x^2 =k^2
k^2 +16x^2 =1
x nguyên => x =0 duy nhất
với x = 0
f(y) = y^2 =6 => vô nghiệm nguyên

ngonhuminh
17 tháng 7 2017 lúc 9:47

<=> y(xy^2 +y+4x) =16
hệ nghiệm nguyên
y ={-16, -8,-4,-2,-1 ,1 ,2 ,4,8,16} (1)
xy^2 +y+4x ={-1,-2,-4,-8,-16,16,8,4,2, 1} (2)

từ (2) <=>xy^2 +y+4x =a
với a ={-1,-2,-4,-8,-16,16,8,4,2,1} tương ứng y ={-16, -8,-4,-2,-1 ,1 ,2 ,4,8,16}

x =`$\frac{a-y}{y^2 +4}$`
a-y = { 15 , 6, 0, -6,-15,15, 6, 0, -6,-15 }
y^2 +4 = { 260,68, 20, 8, 5, 5, 8,20, 68,260 }

a-y=0 hoặc cần |a-y| >= y^2 +4
=> có các giá tri x nguyên
x ={0, -3,3,0}
y ={-4,-1,1,4}
kết luận nghiệm
(x,y) =(0,-4) ; (-3;-1) ;(3;1); (0;4)

Lee Yeong Ji
Xem chi tiết
lê thị xuân nở
7 tháng 5 2022 lúc 10:29

(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25

x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0

(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0

(x+y+1+xy+5)(x+y+1+xy−5)=0(x+y+1+xy+5)(x+y+1+xy−5)=0[x+y+xy=−6x+y+xy=4[x+y+xy=−6x+y+xy=4

Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)

ta có bảng:

x+1                   1                5                -1                  -5

y+1                 -5                -1                5                     1

x                       0                 4                 -2                    -6

y                     -6                  -2                 4                  0

→(x,y)ϵ{(0;−6),(4;−2)...}

 
diggory ( kẻ lạc lõng )
7 tháng 5 2022 lúc 11:28

\(\left(1+x^2\right)\left(1+y^2+4xy\right)+2\left(x+y\right)\left(1+xy\right)=25\)

\(\Leftrightarrow\) \(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)

\(\Leftrightarrow\) \(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)

\(\Leftrightarrow\) \(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x+y+xy=-6\\x+y+xy=4\end{matrix}\right.\)

nếu \(x+y+xy=-6\Rightarrow\left(x+1\right)\left(y+1\right)=-5\) 

                                                                ( vì \(x,y\in Z\) nên \(x+1;y+1\in Z\) )

ta lập bảng :

       \(x+1\)           \(1\)         \(5\)         \(-1\)         \(-5\)
       \(y+1\)         \(-5\)          \(-1\)          \(5\)          \(1\) 
          \(x\)            \(0\)            \(4\)         \(-2\)          \(-6\) 
           \(y\)         \(-6\)          \(-2\)           \(4\)           \(0\)

\(\Rightarrow\) \(x;y\in\left\{\left(0,6\right);\left(4,-2\right);\left(-2,4\right);\left(-6,0\right)\right\}\)

s2 Lắc Lư  s2
Xem chi tiết