X phần Y=8phần và X+y
9 phần x+3 = 8phần x-1
\(\dfrac{9}{x+3}=\dfrac{8}{x-1}\) (ĐK: x ≠ 1;-3)
\(\Leftrightarrow9\left(x-1\right)=8\left(x+3\right)\)
\(\Leftrightarrow9x-9=8x+24\)
\(\Leftrightarrow9x-8x=24+9\)
\(\Leftrightarrow x=33\) (TMĐK)
Biết x và y là hai đại lượng tỉ lệ nghịch với nhau,được liên hệ theo công thứcy=-8phần x A)tìm hẹ sôd tỉ lệ a? B)tính y khi x=-4;x=8 Mọi người giúp em với ạ em cảm ơn ạa
a: a=-8
b: Khi x=-4 thì y=-8/-4=2
Khi x=8 thì y=-8/8=-1
a) tìm hai số x và y biết x:2 = y: (-5) và x-y =-7
b) tìm ba số x,y,z biết x phần 2 = y phần 3 ,y phần 4 và z phần 5 và x+y-z=10
cảm ơn trước ak
a) Ta có: \(x:2=y:\left(-5\right)\)
nên \(\dfrac{x}{2}=\dfrac{y}{-5}\)
mà x-y=-7
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-1\\\dfrac{y}{-5}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)
Vậy: (x,y)=(-2;5)
b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{x}{8}=\dfrac{y}{12}\)(1)
Ta có: \(\dfrac{y}{4}=\dfrac{z}{5}\)
nên \(\dfrac{y}{12}=\dfrac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
mà x+y-z=10
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{8}=2\\\dfrac{y}{12}=2\\\dfrac{z}{15}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=16\\y=24\\z=30\end{matrix}\right.\)
Vậy: (x,y,z)=(16;24;30)
b)
Do đó ta có
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
Tìm x,y thuộc Z biết
a,x phần y = 3 phần 5 và x +y =16
b,x-1 phần 5 =2 phần ý
c,x+1 phần y = 3 phần 5 và x-y=9
d,x(y+2)+y=1
tìm các số nguyên x,y
-x phần 12 và 1 phần 6 phần -14
-3 phần y và 6 phần -14
x phần -2 và -8 phần x
-x phần y và x+1 phần y+1
Tìm x,y thuộc Z biết
a,x phần y = 3 phần 5 và x +y =16
b,x-1 phần 5 =2 phần ý
c,x+1 phần y = 3 phần 5 và x-y=9
d,x(y+2)+y=1
Tìm x;y
a 2x=3y và 3x - y=7
b x phần 3 = y phần 4 và x phần y = 192
c x phần 5 = y phần 4 và x mũ 2 - y mũ 2 = 36
tìm x,y,z biết x+y+z khác 0 và x phần y+z-3= y phần x+z= z phần x+y+3= 1 phần 4044 x+y+z
\(\dfrac{x}{y+z-3}=\dfrac{y}{x+z}=\dfrac{z}{x+y+3}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=\dfrac{1}{4044\left(x+y+z\right)}\)
\(\Rightarrow\left\{{}\begin{matrix}y+z-3=2x\\x+z=2y\\x+y+3=2z\end{matrix}\right.\) và \(4044\left(x+y+z\right)=2\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+z=3x+3\\x+y+z=3y\\x+y+z=3z-3\end{matrix}\right.\\ \Rightarrow3x+3=3y=3z-3\\ \Rightarrow x+1=y=z-1\)
\(\left\{{}\begin{matrix}x=y-1\\z=y+1\end{matrix}\right.\)
Lại có \(4044\left(x+y+z\right)=2\)
\(\Rightarrow4044\left(y-1+y+y+1\right)=2\\ \Rightarrow4044\cdot3y=2\\ \Rightarrow y=\dfrac{1}{674}\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{673}{674}\\z=\dfrac{675}{674}\end{matrix}\right.\)
Bài 3 : a) Tìm x,y,z biết :
2x = 3y ; 4y = 5z và 4x - 3y + 5z = 7
b) x^3 phần 8 = y ^3 phần 64 = z^3 phần 216 và x^2 +y^2 + z^2 = 14
Bài 4 : Cho 3 số x,y,z khác 0 thỏa mãn :
y + z - x phần x = z + x - y phần y = x + y - z phần z hãy tính giá trị biểu thức :
C = ( 1 + y phần x ) ( 1 + y phần z ) ( 1 + z phần x )
Bài 5 : Tìm x,y,z biết : 2x = 3y = 5z và | x - 2y | = 5
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)