C=9x\(^2\) +y\(^2\) -2xy -8x+10
Tìm Giá trị nhỏ nhất của biểu thức
Tìm giá trị nhỏ nhất của biểu thức:
\(A=2x^2+y^2+8x-2xy-2y+1988\)
\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+x^2+6x+9+1978\)
\(=\left(x-y\right)^2+2\left(x-y\right)+1+\left(x+3\right)^2+1978\)
\(=\left(x-y+1\right)^2+\left(x+3\right)^2+1978\ge1978\)
\(A_{min}=1978\) khi \(\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
tìm giá trị lớn nhất nhỏ nhất của biểu thức sau : a) P= 3+2x-9x^2 b) Q= -2x^2-y^2+2xy+1
1/Chứng minh rằng các biểu thức sau luôn dương với mọi giá trị của biến ?
a)P=x2-8x+17
b)Q=x2-x+1
2/Tìm giá trị nhỏ nhất của biểu thức :
a)P=9x2-2x+3
b)R=2x2+y2-2xy+1
Ta có : x2 - x + 1
=.\(x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Hay \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
Ta có : x2 - 8x + 17
= x2 - 2.x.4 + 16 + 1
= (x - 4)2 + 1
Mà (x - 4)2 \(\ge0\forall x\)
Nên : (x - 4)2 + 1 \(\ge1\forall x\)
Hay (x - 4)2 + 1 \(>0\forall x\)\(>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
tìm GTNN,GTLN của biểu thức sau
a)giá trị nhỏ nhất
A= 9x^2-x+5
b) Giá trị nhỏ nhất
B= 4x^2+2y^2+4xy+2018
c) gia tri lớn nhất
C= 3x-4x^2+10
d) giá trị lớn nhất
D= -5x^2-y^2+2xy-4x+2016
giúp mik với.GẤP LẮM Ạ
a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5
GTNN A = 4,97
b) = (2x +y)2 + y2 + 2018
GTNN B = 2018 khi x=0;y=0
c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10
GTLN C = 169/16
d) = -(x-y)2 - (2x +1) +1 + 2016
GTLN D = 2017
(trg bn cho bài khó dữ z, làm hại cả não tui)
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Tìm giá trị nhỏ nhất của biểu thức: A=2x^2+y^2+2xy-6x-2y+10
\(A=2x^2+y^2+2xy-6x-2y+10\)
<=>\(A=y^2+2y\left(x-1\right)+2x^2-6x+10\)
<=>\(A=y^2+2y\left(x-1\right)+\left(x^2-2x+1\right)+\left(x^2-4x+4\right)+5\)
<=>\(A=y^2+2y\left(x-1\right)+\left(x-1\right)^2+\left(x-2\right)^2+5\)
<=>\(A=\left(y+x-1\right)^2+\left(x-2\right)^2+5\ge5\)
=> A đạt giá trị nhỏ nhất là 5 khi \(\hept{\begin{cases}\left(y+x-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y+x-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
tìm giá trị nhỏ nhất của biểu thức : A = 2x^2 -8x +10 + (y-3)^4
A = 2x^2 - 8 x + 10 + (y-3)^4
A = (2x^2 - 8x + 8) + (y-3)^4 + 2
A = 2.(x^2 - 4x + 4) + (y-3)^4 + 2
A = 2.(x^2-2)^2 + (y-3)^4 + 2 >= 2.
Dấu "=" xảy ra <=> x^2 - 2 = 0 và y - 3 = 0
<=> x = \(\pm\sqrt{2}\)và y = 3.
Vậy Min A = 2 <=> x = \(\pm\sqrt{2}\)và y = 3
Tìm giá trị nhỏ nhất của biểu thức : D = x^2 + 4y^2 - 2xy -6y-10(x-y) +32
\(D=x^2+4y^2-2xy-6y-10x+10y+32\)
\(=x^2-2.x\left(y+5\right)+\left(y+5\right)^2-\left(y+5\right)^2+4y^2+4y+32\)
\(=\left(x-y-5\right)^2-y^2-10y-25+4y^2+4y+32\)
\(=\left(x-y-5\right)^2+3y^2-6y+7\)
\(=\left(x-y-5\right)^2+3\left(y^2-2y+1\right)+4\)
\(=\left(x-y-5\right)^2+3\left(y-1\right)^2+4\)
Ta thấy : \(\left(x-y-5\right)^2+3\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow D\ge4\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-5=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=6\\y=1\end{cases}}\)
Vậy : min \(D=4\) tại \(x=6,y=1\)
a) Tìm giá trị nhỏ nhất của biểu thức: A = 4x2 - 12x + 100
b) Tìm giá trị lớn nhất của biểu thức: B = -x2 - x + 1
c) Tìm giá trị nhỏ nhất của biểu thức: C = 2x2 + 2xy + y2 - 2x + 2y + 2
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0