Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Vân Anh
Xem chi tiết
Trần Thị Loan
22 tháng 10 2015 lúc 21:38

A B M C

(=>) Gọi C là giao của AM và đtr

tam giác ABC nội tiếp đtr đường kính AB => tam giác ABC vuông tại C => góc ACB = 90=> góc MCB = 90o

=> Tam giác MCB vuông tại C => góc CMB < 90 Hay góc AMB < 90o

(<=) Giả sử M nằm trong đtr 

A B C M

Gọi C là giao của AM và đtr

Tam giác ACB vuông tại C => góc ACB = 90o

Mà góc AMB là góc ngoài của tam giác MCB tại M => góc AMB > góc MCB = 90=> Mâu thuẫn với đề bài

Vậy điều giả sử sai => M nằm ngoài đtr

Vậy...

Phạm Duy Sinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 1 2023 lúc 7:22

a: Xét (O) có

MA,MB là tiếp tuyến

nên MA=MB

b: Xét ΔMAB có MA=MB và góc AMB=60 độ

nên ΔMAB đều

Không Có Tên
Xem chi tiết
Hảo Hán Quá
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 12 2023 lúc 20:12

a: Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

=>ΔMAB cân tại M

b: Xét tứ giác OAMB có

\(\widehat{OAM}+\widehat{OBM}+\widehat{AMB}+\widehat{AOB}=360^0\)

=>\(\widehat{AOB}+60^0+90^0+90^0=360^0\)

=>\(\widehat{AOB}+240^0=360^0\)

=>\(\widehat{AOB}=120^0\)

c: ta có: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 8 2017 lúc 3:02

Để học tốt Toán 9 | Giải bài tập Toán 9

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    OC là tia phân giác của ∠AOM

    OD và tia phân giác của ∠BOM

OC và OD là các tia phân giác của hai góc kề bù ∠AOM và ∠BOM nên OC ⊥ OD.

=> ∠COD = 90o (đpcm)

 

Phạm Thị Huệ
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 0:44

Bài 1: 

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay ΔMAB cân tại M

mà \(\widehat{AMB}=60^0\)

nên ΔMBA đều

b: Xét ΔAOM vuông tại A có 

\(AM=OA\cdot\tan30^0\)

nên \(AM=5\sqrt{3}\left(cm\right)\)

\(C_{AMB}=3\cdot AM=15\sqrt{3}\left(cm\right)\)

c: Ta có: MA=MB

nên M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

hay MO⊥AB(1)

Xét (O) có

ΔABC nội tiếp

AC là đường kính

DO đó: ΔABC vuông tại B

Suy ra: AB⊥BC(2)

Từ (1) và (2) suy ra OM//BC

hay BMOC là hình thang

Phạm Thị Huệ
Xem chi tiết
Ánh Loan
18 tháng 11 2016 lúc 20:30

c

Gọi H là giao điểm của AB và OM

a, Xét Δv MAO và ΔvMBO

Có MO chung

AO=OB(=bk)

=> ΔvMAO= ΔMBO (ch-cgv)

=> MA=MB

Trong ΔAMB

Có MA=MB(cmt)

=> ΔAMB cân tại M

lại có góc AMB=60 độ

=> ΔAMB là Δ đều

b, Ta có: góc AMO=góc BMO ( ΔvMAO= ΔvMBO)

mà góc AMO+ góc BMO= góc AMB=60 độ

=> góc AMO=\(\frac{1}{2}.60=30^0\)

Áp dụng tỉ số lượng giác

Ta có : tan góc AMO=\(\frac{AO}{AM}\)

tan30=\(\frac{5}{AM}\)

=>AM=\(\frac{5}{tan30}=5\sqrt{3}\)

Chu vi ΔAMB= AM.3=\(5\sqrt{3}.3=15\sqrt{3}\)

c, Ta có OA=OB (=bk)

=> O thuộc đường trung trực AB(1)

MA=MB(cmt)

=> M thuộc đường trung trực AB (2)

Từ (1)(2)=> OM là cả đường trung trực

=> MO vuông góc AB (*)

Ta có: OA=OB=OC(=bk)

=> OB=\(\frac{1}{2}AC\)

mà OB là đường trung tuyến

=> Δ ABC vuông tại B

=> AB vuông góc BC(**)

Từ (*)(**)=> MO//BC

=> BMOC là hình thang

Ánh Loan
18 tháng 11 2016 lúc 20:41

Bài 2:

a,

Ta có : góc AQM=90 độ ( MQ vuông góc xy)

góc APM =90 độ ( MP vuông góc AB)

góc QAP=90độ ( xy vuông góc OA)

=> QMPA là hình chữ nhật

b, Trong hình chữ nhật QMPA:

Có : I là trung điểm của đường chéo thứ nhất QP

-> I cũng là trung điểm của đường chéo thứ 2 AM

=> IA=IM

=> OI vuông góc AM tại I ( đường kính đi qua trung điểm => vuông góc ( đ/Lý 3)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 5 2017 lúc 2:02

Giải bài 32 trang 80 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cách 1:

Giải bài 32 trang 80 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến PT và dây PB

Giải bài 32 trang 80 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ PT là tiếp tuyến của đường tròn (O)

⇒ PT ⊥ OP

⇒ ΔOPT vuông tại P

Giải bài 32 trang 80 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cách 2:

ΔPBT có: Giải bài 32 trang 80 SGK Toán 9 Tập 2 | Giải toán lớp 9 (định lý góc ngoài tam giác) (1)

ΔOPB có OP = OB (= R)

⇒ ΔOPB cân tại O

Giải bài 32 trang 80 SGK Toán 9 Tập 2 | Giải toán lớp 9

PT là tiếp tuyến của đường tròn (O)

⇒ PT ⊥ OP

Giải bài 32 trang 80 SGK Toán 9 Tập 2 | Giải toán lớp 9

Minh Hoang
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 11 2023 lúc 7:28

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>CB\(\perp\)CA tại C

=>CB là tiếp tuyến của (A;AC)

Xét (A;AC) có

\(\widehat{BCE}\) là góc tạo bởi tiếp tuyến CB và dây cung CE)

\(\widehat{CDE}\) là góc nội tiếp chắn cung CE

Do đó: \(\widehat{BCE}=\widehat{CDE}\)

Xét (O) có

\(\widehat{CBE}\) là góc nội tiếp chắn cung CN

\(\widehat{CDN}\) là góc nội tiếp chắn cung CN

Do đó: \(\widehat{CBE}=\widehat{CDN}\)

mà \(\widehat{BCE}=\widehat{CDE}\)

nên \(\widehat{CBE}+\widehat{BCE}=\widehat{CDN}+\widehat{CDE}=\widehat{NDE}\left(1\right)\)

Xét ΔCEB có \(\widehat{CEN}\) là góc ngoài tại đỉnh E

nên \(\widehat{CEN}=\widehat{CBE}+\widehat{BCE}\left(2\right)\)

Từ(1) và (2) suy ra \(\widehat{CEN}=\widehat{NDE}\)

AC=AD

=>A nằm trên đường trung trực của CD(3)

OC=OD

=>O nằm trên đường trung trực của CD(4)

Từ (3) và (4) suy ra OA là đường trung trực của CD

=>BA là đường trung trực của CD

=>\(sđ\stackrel\frown{BC}=sđ\stackrel\frown{BD}\)

Xét (O) có

\(\widehat{BNC}\) là góc nội tiếp chắn cung BC

\(\widehat{BND}\) là góc nội tiếp chắn cung BD

\(sđ\stackrel\frown{BC}=sđ\stackrel\frown{BD}\)

Do đó: \(\widehat{BNC}=\widehat{BND}\)

Xét ΔCEN và ΔEDN có

\(\widehat{CEN}=\widehat{EDN}\)

\(\widehat{CNE}=\widehat{END}\)

Do đó: ΔCEN đồng dạng với ΔEDN

=>\(\dfrac{NC}{NE}=\dfrac{NE}{ND}\)

=>\(NE^2=NC\cdot ND\)