So sánh các số sau:
a. \(\sqrt{7}+\sqrt{15}\) và 7
b. \(\sqrt{17}+\sqrt{5+1}\) và \(\sqrt{45}\)
So sánh các số thực sau:
\(\sqrt{7}+\sqrt{15}\)và \(7\)
\(\sqrt{17}+\sqrt{5}+1\)và \(\sqrt{45}\)
\(\frac{23-2\sqrt{19}}{3}\)và \(\sqrt{27}\)
\(\sqrt{3\sqrt{2}}\)và \(\sqrt{2\sqrt{3}}\)
\(a\)
\(\sqrt{7}+\sqrt{15}\)
\(=\sqrt{7+15}\)
\(=4,69\)
\(4,69< 7\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
\(b\)
\(\sqrt{7}+\sqrt{15}+1\)
\(=\sqrt{7+15}+1\)
\(=4,69+1\)
\(=5,69\)
\(\sqrt{45}\)
\(=6,7\)
\(5,69< 6,7\)
\(\Rightarrow\)\(\sqrt{7}+\sqrt{15}+1\)\(< \)\(\sqrt{45}\)
\(c\)
\(\frac{23-2\sqrt{19}}{3}\)
\(=\frac{22.4,53}{3}\)
\(=\frac{95,7}{3}\)
\(=31,9\)
\(\sqrt{27}\)
\(=5,19\)
\(31,9>5,19\)
\(\text{}\Rightarrow\text{}\text{}\)\(\frac{23-2\sqrt{19}}{3}\)\(>\sqrt{27}\)
\(d\)
\(\sqrt{3\sqrt{2}}\)
\(=\sqrt{3.1,41}\)
\(=\sqrt{4,23}\)
\(=2,05\)
\(\sqrt{2\sqrt{3}}\)
\(=\sqrt{2.1,73}\)
\(=\sqrt{3,46}\)
\(=1,86\)
\(2,05>1,86\)
\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
\(Học \) \(Tốt !!!\)
a) Ta có : \(\sqrt{7}< \sqrt{9}=3;\sqrt{15}< \sqrt{16}=4\)
Do đó : \(\sqrt{7}+\sqrt{15}< 3+4=7\)
b) Ta có : \(\sqrt{17}>\sqrt{16}=4;\sqrt{5}>\sqrt{4}=2\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>4+2+1=7\)
Lại có : \(\sqrt{45}< \sqrt{49}< 7\)
Do đó : \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
c) Ta thấy : \(\sqrt{19}>\sqrt{16}=4\)
\(\Rightarrow2\sqrt{19}>2.4=8\)
\(\Rightarrow-2\sqrt{19}< -8\)
\(\Rightarrow23-2\sqrt{19}< 23-8=15\)
\(\Rightarrow\frac{23-2\sqrt{19}}{3}< 5\). Mặt khác : \(\sqrt{27}>\sqrt{25}=5\)
Nên : \(\frac{23-2\sqrt{19}}{3}< \sqrt{27}\)
d) Vì : \(18>12>0\Rightarrow\sqrt{18}>\sqrt{12}>0\)
\(\Leftrightarrow3\sqrt{2}>2\sqrt{3}>0\)
\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
So sÁNH các số sau không dùng máy tính
a) \(\sqrt{7}+\sqrt{15}và7\)
b)\(\sqrt{2}+\sqrt{11}và\sqrt{3}+5\)
c) \(\sqrt{21}-\sqrt{5}và\sqrt{20}-\sqrt{6}\)
d)\(\sqrt{17}+\sqrt{21}+1và\sqrt{99}\)
a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)
\(7^2=49=7+42\)
mà \(15+2\sqrt{105}< 42\)
nên \(\sqrt{7}+\sqrt{15}< 7\)
b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)
\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)
mà \(2\sqrt{22}< 15+10\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)
so sánh (éo dùng máy tính:]]] )
a) \(\sqrt{7}\)+\(\sqrt{15}\) và 7
b) \(\sqrt{17}\)+ \(\sqrt{5}\) +1 và\(\sqrt{45}\)
a ) \(\sqrt{7}+\sqrt{15}vs7\)
=> \(\sqrt{7}+\sqrt{15}< 7\)
b ) \(\sqrt{17}+\sqrt{5}+1vs\sqrt{45}\)
=> \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
b, \(\sqrt{17}+\sqrt{5}+1\) và \(\sqrt{45}\)
\(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)
\(\sqrt{45}< \sqrt{49}=7\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
Bài 1: Tính
A=\(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
B=\(\sqrt{13-\sqrt{160}-\sqrt{53+4\sqrt{90}}}\)
C=\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
D=\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
E= \(\sqrt{4-\sqrt{7}}+\sqrt{4+\sqrt{7}}\)
F= \(\sqrt{3+\sqrt{11+6\sqrt{2}}}-\sqrt{5+2\sqrt{6}}\)
G=\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
Bài 2: so sánh
a) \(\sqrt{24}+\sqrt{45}\) và 12
b) \(\sqrt{37}-\sqrt{15}\) và 2
c) \(\sqrt{16}\) và \(\sqrt{15}\times\sqrt{17}\)
d) 8 và \(\sqrt{15}+\sqrt{17}\)
Bài 2 :
a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)
b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)
c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)
So sánh các số:
a) \(\sqrt{5\sqrt{7}}\)và \(\sqrt{7\sqrt{5}}\)
b) \(\sqrt{31}-\sqrt{19}\)và \(6-\sqrt{17}\)
c) \(\sqrt{10}+\sqrt{17}\)và \(\sqrt{61}\)
a \(\left(\sqrt{5\sqrt{7}}\right)^4=\left(\left(\sqrt{5\sqrt{7}}\right)^2\right)^2=\left(5\sqrt{7}\right)^2=25\cdot7=175\)
\(=\left(\sqrt{7\sqrt{5}}\right)^4=\left(\left(\sqrt{7\sqrt{5}}\right)^2\right)^2=\left(7\sqrt{5}\right)^2=49\cdot5=240\)
vì 175<240\(\Rightarrow\left(\sqrt{5\sqrt{7}}\right)^4< \left(\sqrt{7\sqrt{5}}\right)^4\Rightarrow\sqrt{5\sqrt{7}}< \sqrt{7\sqrt{5}}\)
b \(6=\sqrt{36}\)
\(\sqrt{31}< \sqrt{36};\sqrt{19}>\sqrt{17}\Rightarrow\sqrt{31}-\sqrt{19}< \sqrt{36}-\sqrt{17}=6-\sqrt{17}\)
c \(\left(\sqrt{10}+\sqrt{17}\right)^2=10+2\sqrt{10\cdot17}+17=27+2\sqrt{170}\)
\(\left(\sqrt{61}\right)^2=61=27+34=27+2\cdot17=27+2\sqrt{289}\)
vì \(2\sqrt{170}< 2\sqrt{289}\Rightarrow27+2\sqrt{170}< 27+2\sqrt{289}\Rightarrow\left(\sqrt{10}+\sqrt{17}\right)^2< \left(\sqrt{61}\right)^2\)
\(\Rightarrow\sqrt{10}+\sqrt{17}< \sqrt{61}\)
1) so sánh
a) \(\sqrt{33}-\sqrt{17}\) và \(6-\sqrt{15}\)
b) \(4\sqrt{5}\) và \(5\sqrt{3}\)
c) \(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)
d) \(\sqrt{10}+\sqrt{17}+1\) và \(\sqrt{61}\)
giúp mk vs ah mk cần gấp
b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)
mà 80>75
nên \(4\sqrt{5}>5\sqrt{3}\)
So sánh các số sau :
a)\(\sqrt{7}-\sqrt{2}\)và 1
b)\(\sqrt{8}+\sqrt{5}\)và \(\sqrt{7}+\sqrt{6}\)
c) \(\sqrt{2005}+\sqrt{2007}\)và \(\sqrt{2006}\)
a/ giả sử \(\sqrt{7}-\sqrt{2}< 1\)
\(\Leftrightarrow\sqrt{7}< 1+\sqrt{2}\)
\(\Leftrightarrow 7< 1+2\sqrt{2}+2\)
\(\Leftrightarrow4< 2\sqrt{2}\Leftrightarrow16< 8\left(sai\right)\)
vậy \(\sqrt{7}-\sqrt{2}>1\)
câu b, c bạn làm tương tụ nhé , giả sử một đẳng thức tạm, sau đó bình phương lên rồi làm theo như trên là được nha
Bài này cũng dễ
a, \(\sqrt{7}-\sqrt{2}\) lớn hơn \(1\) . Vì
\(\sqrt{7}-\sqrt{2}=1,231537749\)
\(1=1\)
b, \(\sqrt{8}+\sqrt{5}\) bé hơn \(\sqrt{7}+\sqrt{6}\) . Vì
\(\sqrt{8}+\sqrt{5}=5,064495102\)
\(\sqrt{7}+\sqrt{6}=5,095241054\)
c, \(\sqrt{2005}+\sqrt{2007}\) lớn hơn \(\sqrt{2006}\) . Vì
\(\sqrt{2005}+\sqrt{2007}=89,57677992\)
\(\sqrt{2006}=44,78839135\)
1) có bao nhiêu giá trị nguyên của x để biểu thức
\(M=\sqrt{x+4}+\sqrt{2-x}\) có nghĩa
2) so sánh
a) \(\sqrt{33}-\sqrt{17}\) và \(6-\sqrt{15}\)
b) \(4\sqrt{5}\) và \(5\sqrt{3}\)
c) \(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)
d) \(\sqrt{10}+\sqrt{17}+1\) và \(\sqrt{61}\)
giúp mk nhé mk cần gấp
Bài 1:
Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)
Số giá trị nguyên thỏa mãn điều kiện là:
\(\left(2+4\right)+1=7\)
So sánh các số:
a)\(\sqrt{7}-\sqrt{2}\)và 1
b) \(\sqrt{8}+\sqrt{5}\)và \(\sqrt{7}+\sqrt{6}\)