Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Anh
Xem chi tiết
Bui Nguyen Khanh Ngoc
Xem chi tiết
Vy trần
Xem chi tiết
Vy trần
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 9 2021 lúc 7:16

\(a,\Delta ABC\) cân nên MH là p/g cũng là trung trực NK

Mà \(I\in MH\) nên \(NI=IK\)

\(\Rightarrow\Delta NIK\) cân tại \(I\Rightarrow\widehat{INK}=\widehat{IKN}\)

\(\Rightarrow\widehat{MNK}-\widehat{INK}=\widehat{MKN}-\widehat{IKN}\left(\Delta MNP.cân\right)\\ \Rightarrow\widehat{ANI}=\widehat{BKI}\)

\(\left\{{}\begin{matrix}\widehat{ANI}=\widehat{BKI}\left(cm.trên\right)\\NI=IK\left(cm.trên\right)\\\widehat{AIN}=\widehat{BIK}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AIN=\Delta BIK\left(g.c.g\right)\)

\(\Rightarrow AN=BK\Rightarrow\dfrac{AN}{MN}=\dfrac{BK}{MK}\left(MN=MK.do.\Delta MNK.cân\right)\)

\(\Rightarrow AB//NK\left(Talét.đảo\right)\\ \Rightarrow ABKN.là.hthang\)

Mà \(\widehat{MNK}=\widehat{MKN}\Rightarrow ABKN.là.hthang.cân\)

\(b,MH\perp NK\left(trung.trực\right)\\ \Rightarrow MH\perp AB\left(NK//AB\right)\Rightarrow MI\perp AB\)

Mà MI là p/g \(\Delta MNK\) nên cũng là p/g \(\Delta MAB\)

\(\Rightarrow\Delta MAB\) cân tại M

\(\Rightarrow MI\) là p/g cũng là trung trực AB

Mà MI là trung trực KN

\(\RightarrowĐpcm\)

 

Dương Lệ Quyên
Xem chi tiết
Bùi Phạm Ngọc Anh 0201
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 7 2016 lúc 14:31

M N K A B I H

a) Dễ thấy MH là đường trung trực của AB , I thuộc MH => IN = IK

=> tam giác INK cân tại I => Góc INH = góc IKH

Mà góc MNK = góc MKN vì tam giác MNK cân tại M

=> Góc BNA = góc AKB . Dễ dàng suy ra tam giác AIN = tam giác BIK (g.c.g)

=> AN = BK . Đến đây áp dụng định lí ta lét đảo được AB // NK => ABKN là hình thang có hai góc kề 1 đáy bằng nhau => ABKN là hình thang cân

b) Dễ thấy MK là đường trung trực của NK vì tam giác MNK cân, có đường phân giác MI

Vì AB // NK nên tam giác MAB cân tại M => có điều tương tự.

Hoàng Lê Bảo Ngọc
10 tháng 7 2016 lúc 14:33

Bài 2 sử dụng tính chất của hình thang cân là ra ^^

Huynh Tran
Xem chi tiết
_ℛℴ✘_
10 tháng 7 2018 lúc 19:17

M N P A B I

Xét \(\Delta APN\) Và \(\Delta BNP\)Có :

  \(\widehat{ANP}=\widehat{BPN}\)

  \(\widehat{APN}=\widehat{BNP}\)

PN là cạnh chung

=> \(\Delta APN=\Delta BNP\left(g-c-g\right)\)

=> PA = NB ( cạnh chung )

=> tứ giác ABPN là hình thang ( 2 đường chéo =  nhau ) (dpcm) 

b) Ta có : \(\Delta MNP\) là tam giác cân

=> MH là đường phân giác cũng là đường trung trực 

Mà BA// PN ( hình thang ) 

    BP = AN => MB = MA 

 => MBA là tam giác cân ( đồng dạng với \(\Delta MNP\))

=> MI là trung trực chung của AB và PN ( dpcm)

Nguyen Chau Phuong
23 tháng 9 2018 lúc 23:19

Diep tu anh ban can chung minh song song o cau a

Ngọc Minh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2023 lúc 0:06

a: Xét ΔMNK và ΔMIK có

MN=MI

góc NMK=góc IMK

MK chung

=>ΔMNK=ΔMIK

=>KN=KI

=>ΔKNI cân tại K

b: ΔMNK=ΔMIK

=>góc MIK=góc MNK=90 độ

b: Xét ΔMEP có

EI,PN là đường cao

EI cắt PN tại K

=>K là trực tâm

=>MK vuông góc EP

Hoa Anh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 2 2022 lúc 23:08

1: Xét ΔNMI vuông tại M và ΔNKI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔNMI=ΔNKI

Suy ra: NM=NK

hay ΔNMK cân tại N

2: Xét ΔMIQ vuông tại M và ΔKIP vuông tại K có

IM=IK

\(\widehat{MIQ}=\widehat{KIP}\)

Do đó: ΔMIQ=ΔKIP

Suy ra: MQ=KP

Ta có: NM+MQ=NQ

NK+KP=NP

mà NM=NK

và MQ=KP

nên NQ=NP

hayΔNQP cân tại N

3: Xét ΔNQP có 

NM/MQ=NK/KP

nên MK//QP