Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mi Mi
Xem chi tiết

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

BÍCH THẢO
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2023 lúc 20:16

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

Nguyên Lê
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2021 lúc 16:24

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

Trần Thùy Linh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 2 2018 lúc 7:48

Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.

Trần Thùy Linh
Xem chi tiết
Ân Trần
20 tháng 1 2016 lúc 21:57

A=n3+n2+2n2+2n

=n2(n+1)+2n(n+1)

=(n+1)(n2+2n)

=n(n+1)(n+2)

Vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 3

=>n(n+1)(n+2) luôn chia hết cho 3 với mọi 

=>A luôn chia hết cho 3 với mọi số nguyên n.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 9 2017 lúc 8:11

Ta có:

U n = 1 n 3 4 + n 3 + 3 n 2 + 3 n + 1 4 1 n 3 + 2 n 2 + n 4 + n 3 + n 2 4 = 1 n n 4 + n n + 1 4 1 n + 1 n 4 + n + 1 n + 1 4 = 1 n n 4 + n + 1 4 1 n + 1 n 4 + n + 1 4 = 1 n + n + 1 1 n 4 + n + 1 4 = n + 1 4 - n 4 n + 1 + n 1 n + 1 - n = n + 1 4 - n 4 , n ≥ 1

Khi đó

S = u 1 + u 2 + . . + u 2018 4 - 1 = 2 4 - 1 4 + 3 4 - 2 4 + . . + 2018 4 4 - 2018 4 - 1 4 = 2018 4 4 - 1 = 2017

Đáp án B

dâu cute
Xem chi tiết
dâu cute
17 tháng 10 2021 lúc 7:55

mn mn ơiii

dâu cute
17 tháng 10 2021 lúc 7:56

helllppppppppp

Nguyễn Hoàng Minh
17 tháng 10 2021 lúc 8:07

\(2,\\ 3^{n-3}+2^{n-3}+3^{n+1}+2^{n+2}\\ =3^{n-3}\left(1+3^4\right)+2^{n-3}\left(1+2^5\right)\\ =3^{n-3}\cdot82+2^{n-3}\cdot33\)

Vì \(3^{n-3}\cdot82⋮2;⋮3\) nên \(3^{n-3}\cdot82⋮6\)

\(2^{n-3}\cdot33⋮2;⋮3\) nên \(2^{n-3}\cdot33⋮6\)

Do đó tổng trên chia hết cho 6 với mọi \(n\in N\)

Hoàng Hưng Đạo
Xem chi tiết
Đoàn Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 10 2021 lúc 9:34

Bài 2: 

\(n^3-n^2+2n+7⋮n^2+1\)

\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n^2-64⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)

\(\Leftrightarrow n\in\left\{0;8;-8\right\}\)