Cho a là 1 số nguyên sao cho a.căn 3 là 1 số hữu tỷ. Chứng minh rằng a = 0
Cho a là 1 số nguyên sao cho a.căn 3 là 1 số hữu tỷ. Chứng minh rằng a = 0
Cho a là 1 số nguyên sao cho a.căn 3 là 1 số hữu tỷ. Chứng minh rằng a = 0
Cho 2 số hữu tỉ a, b khác nhau và khác 0. Chứng minh rằng số \(A=\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a-b\right)^2}}\) là số hữu tỷ
\(A=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2\left(a-b\right)^2}}\)
\(=\sqrt{\dfrac{b^2\left(a^2-2ab+b^2\right)+a^2\left(a^2-2ab+b^2\right)+a^2b^2}{a^2b^2\left(a-b\right)^2}}\)
\(=\sqrt{\dfrac{b^4+a^4-2ab^3-2a^3b+3a^2b^2}{a^2b^2\left(a-b\right)^2}}=\sqrt{\dfrac{\left(b^2+a^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2\left(a-b\right)^2}}\)
\(=\sqrt{\dfrac{\left(b^2+a^2-ab\right)}{a^2b^2\left(a-b\right)^2}}=\left|\dfrac{a^2+b^2-ab}{ab\left(a-b\right)}\right|\)
Do a,b là số hữu tỉ\(\Rightarrow\)\(\left|\dfrac{a^2+b^2-ab}{ab\left(a-b\right)}\right|\) là số hữu tỉ hay A là số hữu tỉ
Chứng minh rằng:
a) Tổng của 1 số hữu tỉ và 1 số vô tỉ là 1 số vô tỷ.
b) Tích của 1 số hữu tỷ khác 0 và 1 số vô tỷ là số vô tỷ.
Cho a là một số hữu tỉ và k là một số tự nhiên khác 0.Chứng minh rằng có một số nguyên duy nhất m sao cho mk<a<(m+1)k
Cho a,b,c là các số hữu tỷ khác 0 thỏa mãn : a+b+c= 0
chứng minh : B = \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)là 1 số hữu tỷ
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) (do a+b+c = 0)
=> \(B=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{ \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
=> đpcm
Cho \(a,b,c\) là các số hữu tỷ thỏa mãn điều kiện \(ab+bc+ac=1\). Chứng minh rằng biểu thức \(Q=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\) là bình phương của một số hữu tỷ.
\(Q=\left(a^2b^2+a^2+b^2+1\right)\left(c^2+1\right)=\)
\(=a^2b^2c^2+a^2b^2+a^2c^2+a^2+b^2c^2+b^2+c^2+1=\)
\(=a^2b^2c^2+\left(a^2b^2+b^2c^2+a^2c^2\right)+\left(a^2+b^2+c^2\right)+1\) (1)
Ta có
\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\)
\(=a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=1\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=1-2abc\left(a+b+c\right)\) (2)
Ta có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=\)
\(=a^2+b^2+c^2+2\)
\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\) (3)
Thay (2) và (3) vào (1)
\(Q=a^2b^2c^2+1-2abc\left(a+b+c\right)+\left(a+b+c\right)^2-2+1=\)
\(=\left(abc\right)^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2=\)
\(=\left[abc-\left(a+b+c\right)\right]^2\)
Cho A=\(\sqrt{1+\frac{1}{xy}}\) biết x và y đều là số hữu tỷ và \(^{x^3+y^3=2x^2y^2}\) chứng minh rằng A cũng là số hữu tỷ
cho a,b là các số hữu tỷ thỏa mãn: (a2+b2-2)(a+b)2+(1-ab)2= -4ab
chứng minh \(\sqrt{1+ab}\) là số hữu tỷ
\(\left(a^2+b^2-2\right)\left(a+b\right)^2+\left(1-ab\right)^2+4ab=0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-2\left(ab+1\right)\right]\left(a+b\right)^2+1+2ab+a^2b^2=0\)
\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(ab+1\right)+\left(ab+1\right)^2=0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-\left(ab+1\right)\right]^2=0\)
\(\Leftrightarrow\left(a+b\right)^2-\left(ab+1\right)=0\)
\(\Leftrightarrow ab+1=\left(a+b\right)^2\)
\(\Rightarrow\sqrt{ab+1}=\left|a+b\right|\) là số hữu tỉ (đpcm)