Tìm giá trị nhỏ nhất của biểu thức:
x^2+4xy+5y^2
tìm giá trị nhỏ nhất của biểu thức x^2-4xy+5y^2-2y+28
đặt biểu thức là A. Ta có:
A=x2 - 4xy + 5y2 - 2y + 28
= (x2-4xy+4y2) + (y2-2y +1)+27
=(x-2y)2 + (y-1)2 + 27
vì (x-2y)2 ≥ 0; (y-1)2 ≥ 0 ⇔ A ≥ 27
⇔\(\left[\begin{array}{} (x-2y)^2=0\\ (y-1)^2 =0 \end{array} \right.\) ⇔\(\left[\begin{array}{} x=2\\ y=1\end{array} \right.\)
Vậy, Min A=27 khi x=2; y=1
tìm giá trị nhỏ nhất của biểu thức B=x^2+5y^2-4xy-4yz-4z+12
Tìm giá trị nhỏ nhất của biểu thức B=x^2+5y^2-4xy-4yz-4z+12
tìm giá trị nhỏ nhất của biểu thức B=x^2+5y^2-4xy-4yz-4z+12
Biểu thức không có giá trị nhỏ nhất nhé. Bạn xem lại đã viết biểu thức đúng chưa nhỉ?
Tìm giá trị nhỏ nhất của biểu thức M = x^2+5y^2-4xy+2x-8y+2021
\(M=x^2+5y^2-4xy+2x-8y+2021\)
\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-4y+4\right)+2016\)
\(=\left(x-2y+1\right)^2+\left(y-2\right)^2+2016\ge2016\)
Vậy GTNN của M là 2016 đạt đươc tại \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
tìm giá trị lớn nhất ( hoặc nhỏ nhất ) của biểu thức:
C = x^2 - 4xy + 5y^2 +10x -22y +28
C = ( x2 - 4xy + 4y2 ) + 10.(x -2y) + ( y2 -2y + 1) + 27
= ( x-2y)2 + 2.5.(x-2y) + 25 + (y-1)2 + 2
= ( x-2y + 5 )2 + (y-1)2 + 2 \(\ge2\)vì \(\left(x-2y+5\right)^2\ge0\forall x,y\) và \(\left(y-1\right)^2\ge0\forall y\)
Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy Min C = 2 \(\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
A= (x2+4y2+9/4+4xy+3x+3y) + (y2+5x+95/4)
= (x+2y+3/2)2 + (y+5/2)2 + 15
=> A min = 15
Dấu "=" xảy ra khi y=-5/2 ; x=7/2
\(A=x^2+5y^2+4xy+3x+8y+26\)
\(=\left(x^2+4xy+4y^2\right)+\left(3x+6y\right)+\frac{9}{4}+\left(y^2+2y+1\right)+\frac{91}{4}\)
\(=\left(x+2y\right)^2+3\left(x+2y\right)+\frac{9}{4}+\left(y+1\right)^2+\frac{91}{4}\)
\(=\left(x+2y+\frac{3}{2}\right)^2+\left(y+1\right)^2+\frac{91}{4}\ge\frac{91}{4}\forall x,y\)
Dấu"="xảy ra khi \(\orbr{\begin{cases}x+2y+\frac{3}{2}=0\\y+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}}\)
Vậy .....
Tìm giá trị nhỏ nhất của biểu thức sau:
x^2 + 5y^2 + 2x - 4xy. - 10y + 14
tìm giá trị nhỏ nhất của biểu thức
c= x^2-4xy+5y^2+10x-22y+28
C = x2 - 4xy + 5y2 + 10x - 22y + 28
= (x^2 - 4xy + 4y^2) + (10x - 20y) + (y^2 - 2y) + 28
= (x - 2y)^2 + 10(x - 2y) + 25 + (y^2 - 2y + 1) + 2
= (x - 2y)^2 + 2.(x - 2y).5 + 5^2 + (y - 1)^2 + 2
= (x - 2y + 5)^2 + (y - 1)2 + 2
Vì (x−2y+5)^2≥0∀x;y; (y−1)^2≥0∀y nên (x−2y+5)^2+(y−1)^2+2≥2∀x;y
hay C≥2∀x;y
Dấu ''='' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2y-5\\y=1\end{cases}\Rightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Tìm giá trị nhỏ nhất của biểu thức A, biết:
A= x2+5y2-4xy-2y+2x+2010
Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3
= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1
= (x-3y)2 + (2x -1)2 + (y-1)2 +1
Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0
(2x -1)2 luôn lớn hơn hoặc bằng 0
(y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0
ta có:\(A=x^2+5y^2-4xy-2y+2x+2010\)
\(=x^2+4y^2+y^2-4xy-4y+2y+2x+1+1+2008\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2+2x+1\right)+2008\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y+1\right)^2+2008\)
\(=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\)
Vì: (x-2y+1)2+(y+1)>0 với \(\forall x;y\)
do đó: (x-2y+1)2+(y+1)+2008 > 2008 với \(\forall x;y\)
Dấu "=" xảy ra khi x-2y+1=0 và y+1=0
ta có:
y+1=0=>y=0-1=>y=-1
thay y=-1 và x-2y+1=0
=>x-2.(-1)+1=0
=>x+2+1=0
=>x+2=-1
=>x=-1-2
=>x=-3
vậy \(A_{min}=2008\) khi x=-3 hoặc x=-1