So sánh 10^n/ 10^n+1 và 10^n+1/ 10^n+2
1 )So sánh A= 10^1992 +1 / 10^1991+ 1
B= 10^1993 +1/ 10^1992 +1
2) So sánh A=n/n+3 và B =n-1/n+4
So sánh:
10^2015+1/10^2014+1 và 10^2016+1/10^2015+1
n/n+1 và n+2/n+3
câu 1:cho a,b,n thuộc N* hãy so sánh a+n/b+n và a/b
câu 2:cho A = 1011-1/1012-1 ; B = 1010+1/1011+1 .so sánh A và B
a, Cho a,b,n ϵ N* . Hãy so sánh \(\dfrac{a+n}{b+n}và\dfrac{a}{b}\)
b, Cho A= \(\dfrac{10^{11}-1}{10^{12}-1};B=\dfrac{10^{10}+1}{10^{11}+1}.\) So sánh A và B
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$
a.cho a,b,n thuộc N*.hãy so sánh a+n/b+n và a/b
B.Cho A=10^11-1/10^12-1; B=10^10/10^11.So sánh A và B.
so sánh các phân số sau : a) 7/9 và 19/17
b) n/n+3 và n+1/n+2
c) A = 10^11-1/10^12-1 và B = 10^10+1/10
a) Ta có :
\(\frac{7}{9}< 1\); \(\frac{19}{17}>1\)
Vì \(\frac{7}{9}< 1< \frac{19}{17}\)nên \(\frac{7}{9}< \frac{19}{17}\)
b) Xét phân số trung gian là \(\frac{n}{n+2}\)
Vì \(\frac{n}{n+3}< \frac{n}{n+2}\)và \(\frac{n}{n+2}< \frac{n+1}{n+2}\)
\(\Rightarrow\frac{n}{n+3}< \frac{n+1}{n+2}\)
c) Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)
Vậy \(A< B\)
So sánh:
A) \(\dfrac{n+1}{n+2}\) và \(\dfrac{n}{n+3}\)
B) A= \(\dfrac{10^{11}-1}{10^{12}-1}\) và B= \(\dfrac{10^{10}+1}{10^{11}+1}\)
Mọi người giúp mình với mình đang cần gấp!
Lời giải:
a.
\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)
\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)
b.
\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 10B\Rightarrow A< B$
a. Cho a,b,n thuộc N* . Hãy so sánh a+n/b+n và a/b
b.Cho A=1011 -1/1012 -1;B=1010 +1/1011 +1. So sánh A và B.
a,Cho a,b,n thuộc N*.Hãy so sánh a+n/b+n và a/b
b,Cho A = 10^11-1/10^12-1
B = 10^10+1/10^11+1
so sánh A và B