Giải:
Ta có:
\(\dfrac{10^n}{10^n+1}=\dfrac{10^n+1-1}{10^n+1}=1-\dfrac{1}{10^n+1}\)
\(\dfrac{10^n+1}{10^n+2}=\dfrac{10^n+2-1}{10^n+2}=1-\dfrac{1}{10^n+2}\)
Vì \(\dfrac{1}{10^n+1}>\dfrac{1}{10^n+2}\)
\(\Leftrightarrow-\dfrac{1}{10^n+1}< -\dfrac{1}{10^n+2}\)
\(\Leftrightarrow-\dfrac{1}{10^n+1}+1< -\dfrac{1}{10^n+2}+1\)
Hay \(1-\dfrac{1}{10^n+1}< 1-\dfrac{1}{10^n+2}\)
\(\Leftrightarrow\dfrac{10^n}{10^n+1}< \dfrac{10^n+1}{10^n+2}\)
Vậy ...