Rút gon biểu thức:
\(A=\frac{a^4-4a^3+a^2+6a+4}{a^2-2a+12}\)
Rút gon P:
\(\left(\frac{a}{a^2-2a}-\frac{a^2+4}{a^3-4a}-\frac{1}{a^2+2a}\right):\frac{a}{a^3+8}-8\)
Rút gọn biểu thức:
D=-3a-{-(-4a+5)+[-(5-6a)+(-12-4a)]}
E=-(2a+4)-{[-2a-(4-10a)+(5a-3)]-(-12+3a)
Rút gọn biểu thức A = \(a-\left(\frac{\left(16-a\right).a}{a^2-4}+\frac{3+2a}{2-a}+\frac{2-3a}{a+2}\right):\frac{a-1}{a^3+4a^2+4a}\)
Cho a > 0 và a ≠ 4 . Rút gọn biểu thức T = a − 2 a + 2 − a + 2 a − 2 . a − 4 a
Với a > 0 và a ≠ 4 , ta có
T
=
a
−
2
a
+
2
−
a
+
2
a
−
2
.
a
−
4
a
=
a
−
2
2
−
a
+
2
2
a
−
2
.
a
+
2
.
a
−
4
a
=
a
−
4
a
+
4
−
a
−
4
a
−
4
a
−
4
.
a
−
4
a
=
−
8
a
a
=
−
8
M=(2/2a-b + 6b/b^2 - 4a^2 - 4/2a+b) : (1+ 4a^2+4b^2/4a^2-b^2)
a) Rút gọn biểu thức M
b) Tính giá trị biểu thức M khi a=1/3 và b=2
Viết rõ đề bài ra đc không ạ
Bài làm:
a) đkxđ: \(2a\ne\pm b\)
Ta có: \(M=\left(\frac{2}{2a-b}+\frac{6b}{b^2-4a^2}-\frac{4}{2a+b}\right)\div\left(\frac{1+4a^2+4b^2}{4a^2-b^2}\right)\)
\(M=\left[\frac{2\left(2a+b\right)-6b-4\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\right].\left(\frac{\left(2a-b\right)\left(2a+b\right)}{4a^2+4b^2+1}\right)\)
\(M=\frac{4a+2b-6b-8a+4b}{4a^2+4b^2+1}\)
\(M=\frac{-4a}{4a^2+4b^2+1}\)
b) +Nếu: \(a=\frac{1}{3}\)và \(b=2\)
Khi đó GT của M là: \(M=\frac{-4.\frac{1}{3}}{4.\frac{1}{3^2}+4.2^2+1}=-\frac{12}{157}\)
Viết rõ đề ra nhá
Cho biểu thức:
\(A=\frac{a^2+4a+4}{a^3+2a^2-4a-8}\)
a. Rút gọn A
b. Tìm các số nguyên a để A có giá trị là một số nguyên
\(a,\)\(A=\frac{a^2+4a+4}{a^3+2a^2-4a-8}\)
\(=\frac{\left(a+2\right)^2}{a^2\left(a+2\right)-4\left(a+2\right)}\)
\(=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a^2-4\right)}\)
\(=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a+2\right)\left(a-2\right)}\)
\(=\frac{1}{a-2}\)
\(a,A=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a^2-4\right)}=\frac{a+2}{\left(a-2\right)\left(a+2\right)}=\frac{1}{a-2}\)
b, Để A có giá trị là một số nguyên thì \(1⋮a-2\)
=> \(\orbr{\begin{cases}a-2=1\\a-2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3\\a=1\end{cases}}}\)
\(a,\)Để \(A\in Z\Rightarrow\frac{1}{x-2}\in Z\)\(\Rightarrow1\)\(⋮\)\(a-2\)
\(\Leftrightarrow a-2\inƯ_1\)
Mà \(Ư_1=\left\{1;-1\right\}\)
\(\Rightarrow\orbr{\begin{cases}a-2=1\\a-2=-1\end{cases}\Rightarrow\orbr{\begin{cases}a=3\\a=1\end{cases}}}\)
Vậy \(A\in Z\Leftrightarrow a\in\left\{1;3\right\}\)
Cho a=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}\)+\(\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Tính giá trị biểu thức
T=\(\dfrac{a^4-4a^3+a^2+6a+4}{a^2-2a+12}\)
\(a^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{16-10-2\sqrt{5}}\)
\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}\)
hay \(a=\sqrt{5}+1\)
\(T=\dfrac{\left(6+2\sqrt{5}\right)^2-4\cdot\left(16+8\sqrt{5}\right)+6+2\sqrt{5}+6\sqrt{5}+6+4}{6+2\sqrt{5}-2\sqrt{5}-2+12}\)
\(=\dfrac{56+24\sqrt{5}-50-24\sqrt{5}}{16}=\dfrac{6}{16}=\dfrac{3}{8}\)
Rút gọn:
\(A=\sqrt{\left(a-3\right)^2}-3a\) với a < 3
\(B=4a+3-\sqrt{\left(2a-1\right)^2}\) với a > 1/2
\(C=\dfrac{4}{a^2-4}\sqrt{\left(a-2\right)^2}\) với a < 2
\(D=\dfrac{a^2-9}{12}:\sqrt{\dfrac{a^2+6a+9}{16}}\) với a < -3
\(A=\left|a-3\right|-3a=3-a-3a=3-4a\)
\(B=4a+3-\left|2a-1\right|=4a+3-2a+1=2a+4\)
\(C=\dfrac{4}{a^2-4}\left|a-2\right|=\dfrac{-4\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=\dfrac{-4}{a+2}\)
\(D=\dfrac{a^2-9}{12}:\sqrt{\dfrac{\left(a+3\right)^2}{16}}=\dfrac{a^2-9}{12}:\dfrac{\left|a+3\right|}{4}=\dfrac{\left(a-3\right)\left(a+3\right).4}{-12\left(a+3\right)}=\dfrac{3-a}{3}\)
\(A=\sqrt{\left(a-3\right)^2}-3a\)
=3-a-3a
=3-4a
Cho biểu thức: \(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)
a)Rút gọn A
b) Tìm giá trị của a để biểu thức A đạt giá trị lớn nhất.
a) \(ĐK:a\ne1;a\ne0\)
\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)
b) Ta có: \(a^2+4\ge4a\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)
Khi đó \(\frac{4a}{a^2+4}\le1\)
Vậy MaxA = 1 khi x = 2
•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ★T&T★ Idol cho em hỏi là, cái chỗ \(\left(a-2\right)^2\ge0\) thì tại sao Khi đó: \(\frac{4a}{a^2+4}\le1\)
Mong Idol pro giải thích hộ em chỗ này :((
À dạ thôi oke, em hiểu rồi((: