Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Duy Sinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 1 2023 lúc 7:22

a: Xét (O) có

MA,MB là tiếp tuyến

nên MA=MB

b: Xét ΔMAB có MA=MB và góc AMB=60 độ

nên ΔMAB đều

Nguyễn Thị Vân Anh
Xem chi tiết
Trần Thị Loan
24 tháng 10 2015 lúc 22:19

(=>)

A C B M O

M nằm trong đường tròn, Kéo dài AM cắt đtr đk AB tại C 

Tam giác ACB nội tiếp đường trong đường kính AB => góc ACB = 90o

Mà góc AMB là góc ngoài của tam giác BCM tại đỉnh M nên góc AMB > góc ACB => góc AMB >  90o

(<=) Chứng minh phản chứng:

Giả sử M ngoài đtr đk AB

A C B M O

Gọi C là giao của AM với đtr => tam  giác ACB vuông tại C => góc ACB = 90o

Ta có: góc ACB là góc ngoài của tam giác BMC tại đỉnh C => góc ACB > BMC => 90> AMB (trái với giả thiết)

Vậy điều giả sử sai

=> đpcm 

Hảo Hán Quá
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 12 2023 lúc 20:12

a: Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

=>ΔMAB cân tại M

b: Xét tứ giác OAMB có

\(\widehat{OAM}+\widehat{OBM}+\widehat{AMB}+\widehat{AOB}=360^0\)

=>\(\widehat{AOB}+60^0+90^0+90^0=360^0\)

=>\(\widehat{AOB}+240^0=360^0\)

=>\(\widehat{AOB}=120^0\)

c: ta có: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB

Sonyeondan Bangtan
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2021 lúc 15:19

a: Xét (O) có 

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

hay OM⊥AB

Nam Phong Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 8:13

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

=>OM\(\perp\)AB tại H và H là trung điểm của AB

b: Xét ΔOAM vuông tại A có AH là đường cao

nên \(HO\cdot HM=HA^2\)

=>\(HO\cdot HM=\left(\dfrac{1}{2}AB\right)^2=\dfrac{1}{4}AB^2\)

c: Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2=OD^2\left(3\right)\)

Xét ΔOIM vuông tại I và ΔOHE vuông tại H có

\(\widehat{HOE}\) chung

Do đó: ΔOIM đồng dạng với ΔOHE

=>\(\dfrac{OI}{OH}=\dfrac{OM}{OE}\)

=>\(OI\cdot OE=OH\cdot OM\left(4\right)\)

Từ (3) và (4) suy ra \(OI\cdot OE=OD^2\)

=>\(\dfrac{OI}{OD}=\dfrac{OD}{OE}\)

Xét ΔOID và ΔODE có

\(\dfrac{OI}{OD}=\dfrac{OD}{OE}\)

\(\widehat{DOE}\) chung

DO đó: ΔOID đồng dạng với ΔODE
=>\(\widehat{OID}=\widehat{ODE}=90^0\)

=>ED là tiếp tuyến của (O)

Phạm Thị Huệ
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 0:44

Bài 1: 

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay ΔMAB cân tại M

mà \(\widehat{AMB}=60^0\)

nên ΔMBA đều

b: Xét ΔAOM vuông tại A có 

\(AM=OA\cdot\tan30^0\)

nên \(AM=5\sqrt{3}\left(cm\right)\)

\(C_{AMB}=3\cdot AM=15\sqrt{3}\left(cm\right)\)

c: Ta có: MA=MB

nên M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

hay MO⊥AB(1)

Xét (O) có

ΔABC nội tiếp

AC là đường kính

DO đó: ΔABC vuông tại B

Suy ra: AB⊥BC(2)

Từ (1) và (2) suy ra OM//BC

hay BMOC là hình thang

Phạm Thị Huệ
Xem chi tiết
Ánh Loan
18 tháng 11 2016 lúc 20:30

c

Gọi H là giao điểm của AB và OM

a, Xét Δv MAO và ΔvMBO

Có MO chung

AO=OB(=bk)

=> ΔvMAO= ΔMBO (ch-cgv)

=> MA=MB

Trong ΔAMB

Có MA=MB(cmt)

=> ΔAMB cân tại M

lại có góc AMB=60 độ

=> ΔAMB là Δ đều

b, Ta có: góc AMO=góc BMO ( ΔvMAO= ΔvMBO)

mà góc AMO+ góc BMO= góc AMB=60 độ

=> góc AMO=\(\frac{1}{2}.60=30^0\)

Áp dụng tỉ số lượng giác

Ta có : tan góc AMO=\(\frac{AO}{AM}\)

tan30=\(\frac{5}{AM}\)

=>AM=\(\frac{5}{tan30}=5\sqrt{3}\)

Chu vi ΔAMB= AM.3=\(5\sqrt{3}.3=15\sqrt{3}\)

c, Ta có OA=OB (=bk)

=> O thuộc đường trung trực AB(1)

MA=MB(cmt)

=> M thuộc đường trung trực AB (2)

Từ (1)(2)=> OM là cả đường trung trực

=> MO vuông góc AB (*)

Ta có: OA=OB=OC(=bk)

=> OB=\(\frac{1}{2}AC\)

mà OB là đường trung tuyến

=> Δ ABC vuông tại B

=> AB vuông góc BC(**)

Từ (*)(**)=> MO//BC

=> BMOC là hình thang

Ánh Loan
18 tháng 11 2016 lúc 20:41

Bài 2:

a,

Ta có : góc AQM=90 độ ( MQ vuông góc xy)

góc APM =90 độ ( MP vuông góc AB)

góc QAP=90độ ( xy vuông góc OA)

=> QMPA là hình chữ nhật

b, Trong hình chữ nhật QMPA:

Có : I là trung điểm của đường chéo thứ nhất QP

-> I cũng là trung điểm của đường chéo thứ 2 AM

=> IA=IM

=> OI vuông góc AM tại I ( đường kính đi qua trung điểm => vuông góc ( đ/Lý 3)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 2 2017 lúc 11:46

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AN ⊥ NB

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AM ⊥ MB

ΔSHB có: SM ⊥ HB, NH ⊥ SB và SM; HN cắt nhau tại A.

⇒ A là trực tâm của ΔSHB.

⇒ AB ⊥ SH (đpcm)

Kiến thức áp dụng

+ Góc nội tiếp chắn nửa đường tròn là góc vuông.

+ Trong một tam giác, ba đường cao đồng quy tại trực tâm.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 11 2019 lúc 3:21

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AN ⊥ NB

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AM ⊥ MB

ΔSHB có: SM ⊥ HB, NH ⊥ SB và SM; HN cắt nhau tại A.

⇒ A là trực tâm của ΔSHB.

⇒ AB ⊥ SH (đpcm)