Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quốc Khánh
Xem chi tiết
Toi da tro lai va te hai...
Xem chi tiết
Zlatan Ibrahimovic
4 tháng 5 2017 lúc 21:25

A=1/2*2+1/3*3+1/4*4+...+1/10*10.

A>1/1*2+1/2*3+1/3*4+...+1/9*10.

A>1-1/2+1/2-1/3+...+1/9-1/10.

A>1-1/10.

A>9/10.

=>A>1/2.

Mà 1/2=66/132>65/132.

=>A>65/132.

Vậy A>65/132.

Nguyễn Hoàng Cẩm Tú
6 tháng 5 2017 lúc 21:00

A=1/2^2+1/3^2+1/4^2+......+1/9^2+1/10^2

=1/4+1/3×3+1/4×4+.....+1/9×9+1/10×10

=>A>1/4+(1/3×4+1/4×5+...+1/9×10+1/10×11)

=>A>1/4+(1/3-1/11)

=>A>1/4+8/33

=>A>65/132( đpcm)

Đặng Thị Thùy Dương
Xem chi tiết
Nguyen Duc Trung Thanh
Xem chi tiết
ST
4 tháng 5 2017 lúc 19:18

A = \(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{100}\)

\(\frac{1}{4}+\left(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\right)\)

Ta có: \(\frac{1}{3^2}>\frac{1}{3.4}\)

\(\frac{1}{4^2}>\frac{1}{4.5}\)

.........

\(\frac{1}{10^2}>\frac{1}{10.11}\)

\(\Rightarrow A>\frac{1}{4}+\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\right)\)

\(\Rightarrow A>\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)\)

\(\Rightarrow A>\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{11}\right)=\frac{1}{4}+\frac{8}{33}=\frac{65}{132}\)

Vậy A > 65/132

Minh Nguyệt channel
Xem chi tiết
Wall HaiAnh
6 tháng 5 2018 lúc 18:20

Ta có:
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)

\(\Leftrightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\)

\(\Leftrightarrow A>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)

\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{11}\)

\(\Leftrightarrow A>\frac{9}{22}\)

Ta lại có:

\(\frac{9}{22}=\frac{9.11}{22\cdot11}=\frac{99}{132}\)

Ta thấy: 99>65

\(\Rightarrow\frac{99}{132}>\frac{65}{132}\)

\(\Rightarrow A>\frac{65}{132}\)

Vậy \(A>\frac{65}{132}\left(đpcm\right)\)

Vampire Princess
6 tháng 5 2018 lúc 18:51

\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)

\(A=\frac{1}{4}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\)

\(A>\frac{1}{4}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)

\(A>\frac{1}{4}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)

\(A>\frac{1}{4}+\frac{1}{3}-\frac{1}{11}\)

\(A>\frac{33}{132}+\frac{44}{132}-\frac{12}{132}\)

\(A>\frac{65}{132}\)

Ngânn Phạmm
Xem chi tiết
Hiiiii~
12 tháng 5 2017 lúc 8:59

Đề sai nha:

Sửa lại:

Cho \(A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{81}+\dfrac{1}{100}\). Chứng tỏ rằng \(A>\dfrac{65}{132}\)

Giải:

Có:

\(A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{81}+\dfrac{1}{100}\)

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}+\dfrac{1}{10^2}\)

Mà: \(\dfrac{1}{3^2}>\dfrac{1}{3.4}\);

\(\dfrac{1}{4^2}>\dfrac{1}{4.5}\);

...

\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\);

\(\dfrac{1}{10^2}>\dfrac{1}{10.11}\).

\(\Rightarrow A>\dfrac{1}{2^2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)

\(A>\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)

\(\Rightarrow A>\dfrac{1}{2^2}+\dfrac{1}{3}-0-0-...-0-\dfrac{1}{11}\)

\(\Rightarrow A>\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{11}\)

\(\Rightarrow A>\dfrac{65}{132}\)

Chúc bạn học tốt!ok

Võ Thị Huyền Linh
Xem chi tiết
ST
12 tháng 5 2017 lúc 8:49

A = \(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)

\(\frac{1}{4}+\left(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\right)\)

Ta có: \(\frac{1}{3^2}>\frac{1}{3.4}\)

\(\frac{1}{4^2}>\frac{1}{4.5}\)

...............

\(\frac{1}{10^2}< \frac{1}{10.11}\)

\(\Rightarrow A>\frac{1}{4}+\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\right)=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{100}\right)=\frac{1}{4}+\frac{8}{33}=\frac{65}{132}\)

Vậy A > 65/132

phạm thị ngọc
Xem chi tiết
Bùi Công Doanh
16 tháng 5 2017 lúc 11:09

a=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{10^2}\)

a>\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{10.11}\)

  =\(\frac{1}{2}-\frac{1}{11}\)

Nguyễn Hoàng Cẩm Tú
Xem chi tiết
Thanh Tùng DZ
5 tháng 5 2017 lúc 12:00

\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\)

\(A>\frac{1}{2^2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)

\(=\frac{1}{2^2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{2^2}+\frac{1}{3}-\frac{1}{11}\)

\(=\frac{65}{132}\)

vậy \(A>\frac{65}{132}\)

Tuấn Anh
8 tháng 5 2019 lúc 22:32

Ta có

A=122 +132 +142 +...+192 +1102 

A>122 +13.4 +14.5 +...+19.10 +110.11 

=122 +13 14 +14 15 +...+19 110 +110 111 

=122 +13 111 

=65132 

vậy A>65132  

K CHO MK NHA 

Tuấn Anh
8 tháng 5 2019 lúc 22:33

To nham