Bài 22 Số học
Tìm n thuộc vào N
a. 20 chia hết cho n
b. 28 chia hết cho n-1
c.113+n chia hết cho 7
Bài 22 Số học
Tìm n thuộc vào N, để
d. 113+n chia hết cho 13
e.n+6 chia hết cho n-1
g.4n-5 chia hết cho 2n-1
tìm n thuộc N để:
a,3n+2 chia hết cho n-1
b,n^2+2n+7 chia hết cho n+2
c,n^2+1 chia hết cho n-1
d,n+8 chia hết cho n+3
e,n+6 chia hết cho n-1
g,4n-5 chia hết cho 2n-1
h,12-n chia hết cho 8-n
i,20 chia hết cho n
k,28 chia hết cho n-1
l,113+n chia hết cho 7
m,113+n chia hết cho 13
Tìm n thuộc N để:
a) n2 + 2n + 7 chia hết cho n+2
b) n2 + 1 chia hết cho n-1
c) n+8 chia hết cho n+3
d) n+6 chia hết cho n-1
e)4n-5 chia hết cho 2n-1
g) 12-n chia hết cho 8-n
h) 20 chia hết cho n
i) 28 chia hết cho n-1
k) 113+n chia hết cho 7
m) 28 chia hết cho n-1
Mọi người giải ra dùm mình nhaa! Mình cần trả lời gấp! Cảm ơn mng nhìu
a) ta có: n2 + 2n + 7 chia hết cho n + 2
=> n.(n+2) + 7 chia hết cho n + 2
mà n.(n+2) chia hết cho n + 2
=> 7 chia hết cho n + 2
=>...
bn tự làm tiếp nha
b) n2 + 1 chia hết cho n - 1
=> n2 - n + n - 1 + 2 chia hết cho n - 1
n.(n-1) + (n-1) + 2 chia hết cho n - 1
(n-1).(n+1) + 2 chia hết cho n - 1
mà (n-1).(n+1) chia hết cho n - 1
=> 2 chia hết cho n - 1
...
mấy câu còn lại dễ bn tự làm
Bài 2: Tìm số tự nhiên n để:
a)(3n+5) chia hết cho n
b) (7n+4) chia hết cho n
c) (27-4n) chia hết cho n ( n<7)
\(a,\Rightarrow n\inƯ\left(5\right)=\left\{1;5\right\}\\ b,\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\\ c,\Rightarrow n\inƯ\left(27\right)=\left\{1;3\right\}\left(n< 7\right)\)
1) tìm ước của các số sau : 64 ; 68; 80; 128; 144; 168; 192
2) tìm số tự nhiên n, biết
a, 12 chia hết cho n
b, 16 chia hết cho n-1
c, 9 chia hết cho n+1
2:
a: 12 chia hết cho n
mà n là số tự nhiên
nên \(n\in\left\{1;2;3;4;6;12\right\}\)
b: 16 chia hết cho n-1
=>\(n-1\inƯ\left(16\right)\)
mà n-1>=-1(n là số tự nhiên nên n>=0)
nên \(n-1\in\left\{-1;1;2;4;8;16\right\}\)
=>\(n\in\left\{0;2;3;5;9;17\right\}\)
c: 9 chia hết cho n+1
=>\(n+1\inƯ\left(9\right)\)
mà n+1>=1(n>=0 do n là số tự nhiên)
nên \(n+1\in\left\{1;3;9\right\}\)
=>\(n\in\left\{0;2;8\right\}\)
Bài 5:Cho a chia hết cho c và b chia hết cho c .Chứng minh rằng ma+nb chia hết cho c , ma - nb chia hết cho c với m,n e N
Bài 6:Chứng minh rằng
a)Tổng của ba số tự nhiên liên tiếp chia hết cho 3.
b) Tổng của 5 số tự nhiên liên tiếp chia hết cho 5
Bài 7:tìm số tự nhiên n biết
a)n+10 chia hết cho n
b)n+16 chia hết cho n+1
c)3n+24 chia hết cho n+2
giúp m với tối m phải nộp r
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
Tìm n thuộc\(ℕ\)
113 + n chia hết cho 7
113 +n chia hết cho 13
b) 113+n=104 +9+n=104+(9+n)
vì 104 chia hết cho 13 nên để 113+n chia hết cho 13 khi (9+n) chia hết cho 13
=> 9+n có dạng 13.k ( k thuộc N)
hay 9+n=13.k => n=13.k -9 ( với k thuộc N*)
a) 113+n=112+1+n=112+(1+n)
Vì 112 chia hết cho 7 nên để 113+n chia hết cho 7 khi (1+n) chia hết cho 7
chúc bạn học tốt
=> 1+n có dạng 7.k ( k thuộc N)
113 + n chia hết cho 7
=> 113 + n thuộc bội chung của 7
Liệt kê => Tìm đc 113 + n -> n