C =\(\dfrac{3}{n-4}\)(n∈Z, n≠4). Tìm n để C là số nguyên.
Cho biểu thức: C= \(\dfrac{n+2}{n+1}\) + \(\dfrac{n+3}{n+1}\) + \(\dfrac{n+4}{n+1}\)
Tìm n để C là số nguyên
\(C=\dfrac{n+2+n+3+n+4}{n+1}=\dfrac{3n+9}{n+1}\)
Để C là số nguyên thì \(n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Cho phân số: C = \(\dfrac{2}{n-1}\) và D = \(\dfrac{n+4}{n+1}\) trong đó n là số nguyên
a, Tìm n để C và D cùng tồn tại
b, Tìm các số nguyên n để C và D đều là các số nguyên
a: ĐKXĐ: \(n\notin\left\{1;-1\right\}\)
Cho phân số C = n phần n - 4 (n thuộc Z, n khác 4). Tìm tất cả các giá trị nguyên của n để C là số nguyên.
Cho phân số C = n/n - 4 ( n e Z, n khác 4 ) Tìm tất cả các số nguyên của n để C là số nguyên
CẦN GẤP Ạ !!!
\(C=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)
Để \(C\in Z\Leftrightarrow1+\frac{4}{n-4}\in Z\Leftrightarrow\frac{4}{n-4}\in Z\)
\(\Leftrightarrow n-4\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow n\in\left\{5;3;6;2;8;0\right\}\)
.....
\(C=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)
Vì \(1\inℤ\)\(\Rightarrow\)Để \(C\inℤ\)thì \(\frac{4}{n-4}\inℤ\)
\(\Rightarrow n-4\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Leftrightarrow n\in\left\{0;2;3;5;6;8\right\}\)
Vậy \(n\in\left\{0;2;3;5;6;8\right\}\)
a) cho phân số C=n/n-4. Tìm tất cả giá trị lá số nguyên của n để C là số nguyên?
b)cho phân số D=2n+7/n+3. Tìm n thuộc z để D là số nguyên
(Chú ý:"/" là dấu gạch ngang phân cách giữa tử số và mẫu số.)
Tìm n+4/n+1(n thuộc Z)
a)Tìm điều kiện của n để M là một phân số
b)Tìm phân số M khi n=0,n=3,n=-7
c)Tìm n thuộc Z để M nhận giá trị là mottj số nguyên
\(M=\frac{n+4}{n+1}\)
a)\(ĐK:n\ne-1\)
b)\(n=0\)
Thay n=0 vào M ta được:
\(M=\frac{0+4}{0+1}=4\)
\(n=3\)
Thay n=3 vào M ta được:
\(M=\frac{3+4}{3+1}=\frac{7}{4}\)
\(n=-7\)
Thay n=-7 vào M ta được:
\(M=\frac{-7+4}{-7+1}=\frac{-3}{-6}=\frac{1}{2}\)
c)\(M=\frac{n+4}{n+1}=\frac{\left(n+1\right)+3}{n+1}=1+\frac{3}{n+1}\)
Để M nguyên thì \(1+\frac{3}{n+1}\)nguyên
Mà \(1\in Z\)nên để \(1+\frac{3}{n+1}\)nguyên thì \(\frac{3}{n+1}\)nguyên
Để \(\frac{3}{n+1}\)nguyên thì \(3⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(3\right)\)
\(\Leftrightarrow n+1\in\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow n\in\left\{-4;-2;0;2\right\}\)(Đều thỏa mãn ĐK)
Vậy....
a, đk x khác -1
b, Với n = 0 => 0+4/0+1 = 4
Với n = 3 => \(\dfrac{3+4}{3+1}=\dfrac{7}{4}\)
Với n = -7 => \(\dfrac{-7+4}{-7+1}=-\dfrac{3}{-6}=\dfrac{1}{2}\)
c, \(\dfrac{n+4}{n+1}=\dfrac{n+1+3}{n+1}=1+\dfrac{3}{n+1}\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n+1 | 1 | -1 | 3 | -3 |
n | 0 | -2 | 2 | -4 |
Cho A =n+4/n+1 (n ∈ Z) a) Tìm số nguyên n để A là 1 phân số b) Tìm phân số A khi n=0;3;-3 c)Tìm số nguyên n để A nhận giá trị nguyên
Ai làm nhanh mk tick cho luôn nha ^____^
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
Bai1 Cho phân số C=n/n-4(n thuộc z,n khác 4)
tìm tất cả các giá trị n để C là số nguyên
Các giá trị của n là:0;2;3;5;6;8
Ai thấy hay thì chọn đúng
Còn bạn muốn biết thêm thì gửi tin nhắn cho mình
Cho biểu thức \(A=\frac{n-4}{n-3}\left(n\in Z\right)\)
a. Số nguyên n phải có điều kiện gì để biểu thức A là phân số?
b. Tìm số nguyên n để A là số nguyên
c. Cho n > -3. Tìm Min của A
a.dk: n thuoc Z, n-4 chia het cho n-3
ket ban nha!
a, \(A=\frac{n-4}{n-3}\) là phân số <=> \(n-3\ne0\)
<=> \(n\ne3\)
b, \(A=\frac{n-4}{n-3}\inℤ\Leftrightarrow n-4⋮n-3\)
\(\Rightarrow n-4⋮n-3\)
\(\Rightarrow n-3-1⋮n-3\)
\(n-3⋮n-3\)
\(\Rightarrow1⋮n-3\)
\(\Rightarrow n-3\inƯ\left(1\right)\)
\(\Rightarrow n-3\in\left\{-1;1\right\}\)
\(\Rightarrow n-3\in\left\{2;4\right\}\)
c, \(A=\frac{n-4}{n-3}=\frac{n-3-1}{n-3}=\frac{n-3}{n-3}-\frac{1}{n-3}=1-\frac{1}{n-3}\)
để A đạt giá trị nỏ nhất thì \(\frac{1}{n-3}\) lớn nhất
=> n - 3 là số nguyên dương nhỏ nhất
=> n - 3 = 1
=> n = 4